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Abstract. New clues for the best understanding of the nature of the symmetry-breaking
mechanism are revealed in this paper. A revision of the standard gauge transformation properties
of Yang–Mills fields, according to a group approach to the quantization scheme, enables the gauge
group coordinates to acquire dynamical content outside the null mass shell. The corresponding
extra (internal) field degrees of freedom are transferred to the vector potentials to conform massive
vector bosons.

1. Introduction

Despite the undoubted success of the standard model in describing strong and electro-weak
interactions, areal (versus artificial) mechanism of mass generation is still lacking. Needless
to say that the discovery of a Higgs boson—a quantum vibration of anabnormal(Higgs)
vacuum—would be of enormous importance; nevertheless, at present, no dynamical basis
for the Higgs mechanism exists, and it is purely phenomenological. It is true that there is
actually nothing inherently unreasonable in the idea that the state of minimum energy|0̃〉
(the vacuum) may be one in which some field quantityϕ̂(x) has a non-zero expectation value
〈0̃|ϕ̂(x)|0̃〉 = ϕ0; in fact, many examples in condensed-matter physics display this feature.
Nevertheless, it remains conjectural whether something similar actually happens in the weak
interaction case.

Also, thead hocintroduction of extra (Higgs) scalar fields in the theory to provide mass
to the vector bosons could be seen as our modern equivalent of those earlier mechanical
contrivances populating theplenum(the ether), albeit very subtly. As in those days, new
perspectives are necessary to explain why it is really not indispensable to look at things in this
way at all.

This paper provides a new approach to quantum Yang–Mills theories, from a group-
theoretic perspective, in which mass enters the theory in anatural way; more precisely, the
presence of mass will manifest through non-trivial transformations of the phaseζ = eiα of the
wavefunctional9(A) under the action of gauge transformations. This non-trivial response of
the phase under gauge transformations causes adeformationof the corresponding Lie-algebra
commutators and leads to the appearance of central terms proportional to mass parameters and,
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consequently, to a quantum generation of extra (internal) field degrees of freedom according
to a self-interacting theory of massless and massive vector bosons (without Higgs fields).

This cohomologicalmechanism of mass generation makes perfect sense from a group
approach to quantization (GAQ [1]) framework, and we shall use its concepts and tools to
work out the quantization of Yang–Mills theories. Given that this is not a common approach
to quantization, we shall give useful references and try to be as self-contained as possible (the
reader is advised to have a look at [2], which contains a general presentation of GAQ for linear
fields). Quantizing on a group, however, will require the revision of some standard concepts,
such asgauge transformations, in order to deal with them properly. The meaning of gauge
transformations in quantum mechanics is not well understood at present (see, for example,
[3]); thus, a re-examination of it is timely.

Gauge symmetry is always a guarantee of the renormalizability of a field theory. The
introduction of mass usually spoils gauge invariance, but the Higgs mechanism manages
to preserve renormalizability by keeping gauge invariance in ahiddenway, and this is the
main novelty in comparison with other attempts to supply mass. However, we must say
that the breakdown of a gauge symmetry and the appearance of anomalous (unexpected)
situations are sometimes subtle questions which generally go with the standard approach
of quantizing classical systems. From a group-theoretic framework, any consistent (non-
perturbative) quantization is just a unitary irreducible representation of a suitable (Lie, Poisson)
algebra. This approach does not assume the existence of a previous classical underlying system
and overcomes some of the standard failures in quantization (anomalies) attached to canonical
quantization, reinterpreting them as normal (even essential) situations.

A unified quantization of massless and massive non-Abelian vector bosons will be
presented in sections 3 and 4, respectively; the Abelian case (electromagnetic and Proca
fields) is discussed briefly in section 2. The Hilbert space of the theory is related to the
carrier space of the unitary irreducible representations of an infinite-dimensionalquantizing
group G̃, the mass eventually being a parameter characterizing the representation. Section
5 is devoted to the incorporation of fermionic matter into the theory. Finally, we conclude
in section 6 and incorporate an appendix with a simple, but illustrative, finite-dimensional
analogy.

2. The Abelian case

In a previous article [4], a revision of the traditional concept of gauge transformation for the
electromagnetic vector potential,

ϕ(x)→ ϕ′(x) + ϕ(x) Aµ(x)→ Aµ(x)− ∂µϕ′(x) (1)

was necessary to arrange this transformation inside a group law, i.e. to adapt this operation
to an action of a group on itself: the group law of the (infinite-dimensional)electromagnetic
quantizing groupG̃. The proposed Lie group̃Ghad a principal bundle structurẽG→ G̃/T̃ and
was parametrized, roughly speaking, by the coordinatesAµ(Ex, t) of the Abelian subgroupGA

of Lie-algebra-valued vector potentials, the coordinatesv = (yµ,3µν) (spacetime translations
and Lorentz transformations) of the Poincaré groupP and the coordinatesϕ(Ex, t) of the local
groupT ≡ U(1)(Ex, t), which took part of the structure group̃T ∼ T ×U(1) and generalized
the standardU(1)-phase invariance,9 ∼ eiα9, in quantum mechanics. In this way, the
extra T̃ -equivariance conditions on wavefunctions (complex-valued functions9(g̃) on G̃),
i.e.9(g̃t ∗ g̃) ∼ 9(g̃), g̃t ∈ T̃ , provided the traditional constraints of the theory.

The above-mentioned revision was motivated by the fact that the transformation (1) is not
compatible with a group law. Indeed, the general propertyg ∗ e = e ∗g = g for a composition
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lawg′′ = g′ ∗g of a groupG (e denotes the identity element), precludes the existence of linear
terms, in the group lawg′′j = g′′j (g′k, gl) of a given parametergj ofG, other thang′j andgj ;
that is, near the identity we haveg′′j = g′j + gj +O(2). Therefore, the group law for the field
parameterAµ cannot have linear terms inϕ. The natural way to address this situation is to
leave the vector potential unchanged, and change the phaseζ = eiα of the quantum-mechanical
wavefunctional9(A) as follows:

ϕ(x)→ ϕ(x) + ϕ′(x) Aµ(x)→ Aµ(x),

ζ → ζ exp

{
− i

2ch̄2

∫
6

dσµ(x) η
ρσ ∂ρϕ

′(x)
↔
∂µAσ (x)

}
(2)

whereηρσ denotes the Minkowski metric,6 denotes a spatial hypersurface and ¯h is the Planck

constant, which is required to kill the dimensions of∂ρϕ′
↔
∂µAρ ≡ ∂ρϕ

′∂µAρ − Aρ∂µ∂ρϕ′
and gives aquantumcharacter to the transformation (2) versus theclassicalcharacter of (1)

(hereafter, we shall use natural unities ¯h = 1 = c). The piece∂ρϕ′
↔
∂µAρ takes part of a

symplecticcurrent

Jµ(g′|g)(x) ≡ 1
2η

ρσ [(vA′)ρ(x)− ∂ρ(vϕ′)(x)]
↔
∂µ[Aσ (x)− ∂σϕ(x)] (3)

(we are denotingg ≡ (A, ϕ, v) and (vA′)ρ(x) ≡ ∂vα(x)

∂xρ
A′α(v(x)), (vϕ

′)(x) ≡ ϕ′(v(x)),
with vα(x) = 3α

βx
β + yα the general action of the restricted Poincaré group P on

Minkowski spacetime) which is conserved,∂µJµ = 0, if Aν andϕ satisfy the field equations
(∂µ∂

µ + m2)Aν = 0 and(∂µ∂µ + m2)ϕ = 0 (m is a parameter with mass dimension), so
that the integral in (2) does not depend on the chosen spacelike hypersurface6. The integral
ξ(g′|g) ≡ ∫

6
dσµ(x) Jµ(g′|g)(x) is a 2-cocycleξ : G×G→ < (G denotes the semi-direct

product(GA × T )×v P ), which fulfils the well known properties:

ξ(g′|g) + ξ(g′ ∗ g|g′′) = ξ(g′|g ∗ g′′) + ξ(g|g′′) ∀g, g′, g′′ ∈ G
ξ(g|e) = 0= ξ(e|g) ∀g ∈ G

(4)

and is the basic ingredient to construct the centrally extended group lawg̃′′ = g̃′ ∗ g̃, more
explicitly

g̃′′ ≡ (g′′; ζ ′′) = (g′ ∗ g; ζ ′ζeiξ(g′|g)) g, g′, g′′ ∈ G; ζ, ζ ′, ζ ′′ ∈ U(1) (5)

of the electromagnetic quantizing groupG̃ (see below and [4] for more details).
It bears mentioning that the required revision of the concepts of gauge transformations

and constraint conditions to construct the quantizing groupG̃ has led, as a byproduct, to a
unified quantization of both the electromagnetic and Proca fields [4], within the same general
scheme of quantization based on a group (GAQ) [1]. The different structure of the central
extension (5) for the massive case, with regard to the massless case, manifests itself through
a true (non-trivial) central-extensioñT of the constraint subgroupT by U(1) given by the
piece

ξm(g
′|g) = 1

2

∫
6

dσµ η
ρσ ∂ρ(vϕ

′)
↔
∂µ∂σϕ = 1

2m
2
∫
6

dσµ(vϕ
′)
↔
∂µϕ (6)

of the cocycleξ(g′|g) ≡ ∫
6

dσµ Jµ(g′|g). The pieceξm, which is one (ξ3) of the three typical
and distinguishable pieces (ξj , j = 1, 2, 3) in whichξ splits up (see [4, 5] and below), gives
dynamics to the local groupT (creates new couples of conjugated variables), and makes the
constraints of second-class nature. This results in an increased number of field degrees of
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freedom with regard to the massless case, leading to a Proca quantum field (see [4] for more
details).

Furthermore, the standard (classical) transformation (1) is regained as the trajectories
associated with generalized equations of motion generated by vector fields with null Noether
invariants (gauge subalgebra, see [2, 4] and [5] for a formal exposition, including tensor fields).

A unified scheme of quantization for non-Abelian massless and massive vector bosons
is also possible in this scheme and suitable as an alternative to the standard spontaneous
symmetry breaking mechanism, which is intended to supply mass while preserving
renormalizability. However, for this case, the situation seems to be a bit more subtle and
far richer.

3. Group quantization of Yang–Mills fields

According to the headings in the foregoing section, our main purpose now is to offer a
reasonable attempt to find a (non-perturbative) unified quantization of non-Abelian massless
and massive vector bosons without Higgs fields. As in the Abelian case, the key to achieving
this goal consists in a revision of the traditional concept of gauge transformation for vector
potentials,

U(x)→ U ′(x)U(x) Aν(x)→ U ′(x)Aν(x)U ′(x)−1 +U ′(x)∂νU ′(x)−1 (7)

in order to make it compatible with a group law: the group law of the (infinite-dimensional)
Yang–Mills quantizing group̃G, which will be the primary object to define the quantum theory.
This group has a fibre-bundle structureG̃→ G̃/T̃ and is parametrized, roughly speaking, by
the coordinatesAµ(x) = rbaAµb (x)T a of an Abelian subgroupGA of Lie-algebra-valued vector
potentials (rba is a coupling-constant matrix andT a are the Lie-algebra generators of the rigid
subgroupT , of a gauge groupT , satisfying the commutation relations [T a, T b] = Cabc T

c

and defining the structure constantsCabc ) and the coordinatesU(x) = eϕa(x)T
a ≡ eϕ(x) of the

local groupT , which takes part of the structure subgroupT̃ ∼ T × U(1) and generalizes
the standardU(1)-phase invariance9 ∼ eiα9 in quantum mechanics as a particular case of
T̃ -equivariancecondition [6]

9(g̃t ∗ g̃) = D(ε)

T̃
(g̃t )9(g̃) ∀g̃t ∈ T̃ ∀g̃ ∈ G̃ (8)

on complex wavefunctionals9 : G̃ → C defined onG̃, whereD(ε)

T̃
symbolizes a specific

representationD of T̃ with ε-index (in particular, theε = ϑ-angle [7] of non-Abelian gauge
theories; see below). As already commented, theT̃ -equivariance conditions (8) provide the
traditionalconstraintsof the theory, which will be first- or second-class depending on whether
the fibration of the structure subgroupT̃ → T̃ /U(1) byU(1) is trivial or not (m = 0 orm 6= 0,
respectively; see below).

As mentioned above in the Abelian case, the transformation (7) is not compatible with
a group law. The natural way to adapt the operation (7) to an action of a group on itself is
to consider thatAν transforms homogeneously under the adjoint action ofT , whereas the
non-tensorial partU(x)∂νU ′(x)−1 modifies the phaseζ = eiα of the wavefunctional9(A)
according to

U(x)→ U ′(x)U(x) Aν(x)→ U ′(x)Aν(x)U ′(x)−1

ζ → ζ exp

{
i

r2

∫
6

dσµ(x) tr
[
U ′(x)−1∂νU

′(x)
↔
∂µAν(x)

]}
. (9)
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We are restricting ourselves, for the sake of simplicity, to gauge groupsT associated with
rigid special unitary groupsT for which the structure constantsCabc are totally anti-symmetric,
and the anti-Hermitian generatorsT a can be chosen such that the Killing–Cartan metric is
just tr(T aT b) = − 1

2δ
ab. For simple groups, the coupling-constant matrixrba reduces to a

multiple of the identityrba = rδba , and we haveAµa = −(2/r) tr(T aAµ). The argument of
the exponential in (9) can be considered to be a piece of a 2-cocycleξ : G × G → < (G
is the semi-direct productG = GA ×U T of T and the Abelian groupGA of Lie-algebra-
valued potentials) constructed through a conserved current,ξ(g′|g) = ∫

6
dσµ(x) Jµ(g′|g)(x),

g′, g ∈ G, so that it does not depend on the chosen spacelike hypersurface6 (see [2, 5]). On
this basis, let us construct a central extensionG̃ of G by making use of a 2-cocycle defined
on the particulart = constant6-hypersurface. We shall also make partial use of the gauge
freedom to set the temporal componentA0 = 0, so that the electric field is simplyEEa = −∂0 EAa
(from now on, and for the sake of simplicity, we shall put any 3-vectorEA asA, and understand
AE = ∑3

j=1A
jEj , in the hope that no confusion will arise). In this case, there is still a

residual gauge invarianceT = Map(<3,T ) (see [8]).
The explicit group lawg̃′′ = g̃′ ∗ g̃ (with g̃ = (g; ζ ) = (A,E,U ; ζ )) for the proposed

infinite-dimensionalYang–Mills quantizing group̃G is

U ′′(x) = U ′(x)U(x)
A′′(x) = A′(x) +U ′(x)A(x)U ′(x)−1

E′′(x) = E′(x) +U ′(x)E(x)U ′(x)−1

ζ ′′ = ζ ′ζ exp

{
− i

r2

3∑
j=1

ξj (A
′, E′, U ′|A,E,U)

}

ξ1(g
′|g) ≡

∫
d3x tr

[(
A′ E′

)
S

(
U ′AU ′−1

U ′EU ′−1

)]

ξ2(g
′|g) ≡

∫
d3x tr

[( ∇U ′U ′−1 E′
)
S

(
U ′∇UU−1U ′−1

U ′EU ′−1

)]

ξ3(g
′|g) ≡ −2

∫
d3x tr[λ(log(U ′U)− logU ′ − logU)]

(10)

whereS =
(

0 1
−1 0

)
is a symplectic matrix andλ ≡ λaT a is a linear function (a matrix) on the

Cartan subalgebra of the rigid subgroupT of T .
We have split up the 2-cocycleξ into three significantly distinguishable 2-cocyclesξj ,

j = 1, 2, 3 (as in [4, 5]) for a much better understanding. The first 2-cocycleξ1 is meant to
providedynamicsto the vector potential, so that the pair(A,E) corresponds to a canonically
conjugate pair of coordinates. The second 2-cocycleξ2, themixed2-cocycle, provides a non-
trivial (non-diagonal) action of the structure subgroupT on vector potentials and determines
the number of degrees of freedom of the constrained theory; it is the non-covariant analogue of
the argument of the exponential in (9). Both cocycles correspond to the analogous ones of the
Abelian case. Concerning the third one,ξ3 ≡ ξλ, its origin and nature departs essentially from
the Abelian ‘analogue’ (6). Unlike the Abelian caseT = U(1)(x), the semi-simple character
of T precludes atruecentral extensioñT of T = Map(<3,T ) byU(1) (this is not the case in
one compact spatial dimension<3 ↔ S1, where true central extensions are known for Kac–
Moody groups). However, there exists certain coboundaries, calledpseudo-cocycles, which
define trivial extensions as such, but provide new commutation relations in the Lie algebra of
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G̃ and provide a non-trivial piece of theconnection formof the theory [1],

2 = ∂

∂gj
ξ(g′|g)

∣∣∣∣
g′=g−1

dgj − iζ−1 dζ (11)

thus altering, in particular, the number of degrees of freedom of the theory (see [9] for a
relationship betweenpseudo-cohomologyandcoadjoint orbitsof semisimple groups). This is
precisely the case of the third cocycle (coboundary, indeed),ξ3(g

′|g) = η(g′∗g)−η(g′)−η(g),
generated by a functionη(g) = −2

∫
d3x tr[λ logU ] with non-trivial gradientδη(g)|g=e =

δη(g)/δgj
∣∣
g=eδg

j 6= 0 at the identityg = e, which is locally linear in the parameters of
the Cartan subgroup with as many independent coefficients (constants)λa as elements in the
Cartan subalgebra, i.e. the range of the rigid groupT . The introduction of such a pseudo-
cocycle is needed to obtain a faithful representation of the rigid subgroupT , according to
our general group representation approach. Pseudo-cocycles similar toξ3 do appear in the
representation of Kac–Moody groups and in conformally invariant theories in general, although
the pseudo-cocycle parameters are usually hidden in a redefinition of the generators involved
in the pseudo-extension (the argument of the Lie-algebra generating function). This is the case
of the Virasoro algebra in string theory,

[L̂n, L̂m] = (n−m)L̂n+m + 1/12(cn3− c′n)δn,−m1̂ (12)

where theL̂0 generator is redefined so as to produce a non-trivial expectation value in the
vacuum,h ≡ (c − c′)/24 [10].

The cocycleξ3, however, forλ 6= 0, again determines the structure of constraints (first-
or second-class) and modifies the dynamical content of the vector potential coordinatesA by
transferring degrees of freedom between theA andϕ coordinates. As in the Abelian case, this
mechanism conforms massive vector bosons so thatξ3 must be considered as amass cocycle.
In this way, the appearance of mass in the theory has acohomological origin. Notice that
the parameterλ (λa) bears the dimensions of cubed mass (in natural unities) and can well be
renamed bym3 (m3

a).
To make more explicit the intrinsic significance of these three quantitiesξj , j = 1, 2, 3,

let us calculate the non-trivial Lie-algebra commutators of the right-invariant vector fields (that
is, the generators of the left-actionLg̃′(g̃) = g̃′ ∗ g̃ of G̃ on itself) from the group law (10).
They are explicitly[

X̃R
A
j
a(x)
, X̃R

Ekb (y)

] = −δabδjkδ(x − y)4[
X̃REa(x), X̃

R
ϕb(y)

] = −Cabc δ(x − y)X̃REc(x) +
1

r
δab∇xδ(x − y)4[

X̃RAa(x), X̃
R
ϕb(y)

] = −Cabc δ(x − y)X̃RAc(x)[
X̃Rϕa(x), X̃

R
ϕb(y)

] = −Cabc δ(x − y)X̃Rϕc(x) − Cabc λcr2
δ(x − y)4

(13)

where we denote by4 ≡ iX̃Lζ = iX̃Rζ the central generator, in order to distinguish it from
the rest, in view of its crucial role in the quantization procedure; it behaves as i times the
identity operator,49(g̃) = i9(g̃), when theU(1) part of theT̃ -equivariance conditions (8),
D
(ε)

T̃
(ζ ) = ζ (always faithful, except in the classical limitU(1) → < [1]), is imposed. The

commutators (13) agree with those of [8] whenλc = 0 and the identificationÊa ≡ iX̃RAa ,

Âa ≡ iX̃REa , Ĝa ≡ iX̃Rϕa is made (note that̃XRAa ∼ δ/δAa andX̃REa ∼ δ/δEa near the identity

elementg̃ = e of G̃, which motivates this particular identification). From the last line of
(13) we realize that the pseudo-cocycleξ3 introduces new central terms proportional to the
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mass parametersλc = m3
c , with respect to the massless case, which provide new ‘conjugated’

coordinates; that is, extra degrees of freedom enter the theory through this pseudo-extension,
which provides dynamics to the local (gauge) coordinatesϕa of the structure subgroup̃T ,
dynamics which is transferred to the vector potentialsAa to conform massive vector bosons.

To understand fully the last statement concerning the interplay among different cocycles
and mainly between the massless and massive cases, we must construct the Hilbert space of
both theories explicitly. Let us proceed with the massless case and leave the peculiarities of
the massive one to the next section.

The representationLg̃′9(g̃) = 9(g̃′ ∗ g̃) of G̃ on T̃ -equivariant wavefunctions (8) proves
to be reducible. The reduction can be achieved by means of those right conditions (‘polarization
conditions’ [1])Rg̃p9(g̃

′) = 9(g̃′ ∗ g̃p) ≡ 9(g̃′) ∀g̃′ ∈ G̃ compatible with theT̃ -equivariant
conditions (8), in particular with49 = i9. In general, polarization conditions contain finite
right transformations generated by left-invariant vector fieldsX̃L devoid of dynamical content
(that is, without a conjugated counterpart), and half of the left-invariant vector fields related
to dynamical coordinates (either ‘positions’ or ‘momenta’). The left-invariant vector fields
without conjugated counterpart are the combinations

Gc ≡
〈
X̃Lθa ≡ X̃Lϕa −

1

r
∇ · X̃LAa , /Cabc λc = 0 ∀b

〉
. (14)

Thecharacteristic subalgebraGc can be completed to afull polarization subalgebraGp in two
different ways:

G(A)p ≡ 〈X̃Lθa ∈ Gc, X̃LAb ∀b〉 G(E)p ≡ 〈X̃Lθa ∈ Gc, X̃LEb ∀b〉 (15)

each one giving rise to a different representation space: (a) the electric field representation and
(b) the magnetic field representation, respectively.

(a) The electric field representation9A

The solution to the polarization conditionsRg̃p9A(g̃) = 9A(g̃), ∀g̃p ∈ G(A)
p , ∀g̃ ∈ G̃ or, in

infinitesimal formX̃L9A = 0,∀X̃L ∈ G(A)p , proves to be

9A(A,E,U ; ζ ) = ζe−(i/r
2)
∫

d3x tr[AE−U∇U−1E]8A(E) (16)

where8A is an arbitrary functional ofE. The left-action of a general elementg̃′ =
(A′, E′, U ′; ζ ′) of G̃ on wavefunctions9A is

Lg̃′9A(g̃) = ζ ′ζe−2(i/r2)
∫

d3x tr[A′U ′EU ′−1+U ′−1∇U ′E+ 1
2A
′E′]

× e−(i/r
2)
∫

d3x tr[AE−U∇U−1E]8A(E
′ +U ′EU ′−1

). (17)

The particular case of̃g′ = g̃t′ = (0, 0, U ′; 1) ∈ T ⊂ T̃ gives us the expression of the rest of
T̃ -equivariant conditions (8), i.e. theconstraint equations:

Lg̃t′9A(g̃) = D(ε)

T̃
(g̃t
′
)9A(g̃)⇒ 8A(E) = e−2(i/r2)

∫
d3x tr[U ′−1∇U ′E]8A(U

′EU ′−1
) (18)

where we have chosen the trivial representationD
(ε)

T̃
= 1 for T (see below for more general

cases).
The polarized,T̃ -equivariant wavefunctions (16) and (18) define the constrained Hilbert

spaceH(G̃) of the theory, and the infinitesimal form̃XR
g̃′9 of the finite left-actionLg̃′9(g̃)

of G̃ onH(G̃) provides the action of the operatorsÂa, Êa, Ĝa on wavefunctions. Thus, the
group G̃ is irreducibly and unitarily represented with respect to the natural scalar product
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〈9|9 ′〉 = ∫
G̃
µ(g̃)9∗(g̃)9 ′(g̃), whereµ(g̃) denotes the standard left-invariant measure ofG̃

(exterior product of the components of the left-invariant 1-formθL).
The infinitesimal form of the finite expressions (17) is

X̃RAa9A = ζe−(i/r
2)
∫

d3x tr[AE−U∇U−1E] iEa8A(E) ⇒ Êa8A(E) = −Ea8A(E)

X̃REa9A = ζe−(i/r
2)
∫

d3x tr[AE−U∇U−1E] δ

δEa
8A(E) ⇒ Âa8A(E) = i

δ

δEa
8A(E)

X̃Rϕa9A = ζe−(i/r
2)
∫

d3x tr[AE−U∇U−1E]

(
− i

r
∇ · Ea +Cabc Eb ·

δ

δEc

)
8A(E)

⇒ Ĝa8A(E) =
(
−1

r
∇ · Êa − Cabc Êb · Âc

)
8A(E)

(19)

which provides the explicit expression for the basic operators of the theory. Several attempts
[11] have been made to simplify the Gauss law constraint (18), which in infinitesimal form reads
Ĝa(x)8A(E) = 0, by means of a unitary transformation8′A(E) = exp{−(i/r)�(E)}8A(E)

in the electric field representation. The variationωaj (E) = −∂�(E)/∂Eja transforms as

a standard Lie-algebra-valued connection and modifies the operatorĜa(x) so that the new
constraint equationŝG′a(x)8

′
A(E) = iCabc Eb · δ

δEc
8′A(E) = 0 reduce to simple ‘s-wave’

conditions.

(b) The magnetic field representation9E

The choice of the polarization subalgebraG(E)p results in polarized wavefunctions of the form

9E(A,E,U ; ζ ) = ζe(i/r
2)
∫

d3x tr[AE−U∇U−1E]8E(A +∇UU−1) (20)

where8E is an arbitrary functional ofA ≡ A+∇UU−1. The left-action ofG̃on wavefunctions
9E is now

Lg̃′9E(g̃) = ζ ′ζ exp

{
−2

i

r2

∫
d3x tr[U ′AU ′−1

E′ +U ′−1
E′U ′∇UU−1

+
1

2
A′E′ − 1

2
U ′∇U ′−1

E′]
}

exp

{
− i

r2

∫
d3x tr[AE − U∇U−1E]

}
×8E

(
A′ +∇U ′U ′−1 +U ′(A +∇UU−1)U ′−1)

. (21)

The constraint equations (18) in the present magnetic representation are

Lg̃t′9(g̃) = D(ε)

T̃
(g̃t
′
)9(g̃) ⇒ 8E(A) = 8E(U

′AU ′−1 +∇U ′U ′−1
) (22)

(note the absence of a phase in comparison with the electric representation case). The
infinitesimal form of the finite expression (21) is

X̃RAa9E = ζe(i/r
2)
∫

d3x tr[AE−U∇U−1E] δ

δAa
8E(A) ⇒ Êa8E(A) = i

δ

δAa
8E(A)

X̃REa9E = −iζe(i/r
2)
∫

d3x tr[AE−U∇U−1E]Aa8E(A) ⇒ Âa8E(A) = Aa8E(A) (23)

X̃Rϕa9E = ζe(i/r
2)
∫

d3x tr[AE−U∇U−1E]

(
−1

r
∇ · δ

δAa
+Cabc Ab ·

δ

δAc

)
8E(A).

SinceT̃ -equivariant conditions (8), (18) and (22) are imposed as finite left restrictions,
it is evident that not all the operators̃XR will preserve the constraints; we shall callG̃good
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the subalgebra of (good∼physical) operators which will do so. These must be found inside
the right-enveloping algebraU(G̃R) of polynomials of the basic operatorŝAa(x), Êb(x), as
forming part of thenormalizerof T ; for example, a sufficient condition for̃Ggood to preserve
the constraints is [̃Ggood, T̃ ] ⊂ Ker dD(ε)

T̃
. In particular, some good operators are

G̃good=
〈
tr
[
Êj (x)B̂k(x)

]
, tr

[
Êj (x)Êk(x)

]
, tr

[
B̂j (x)B̂k(x)

]
, 4

〉
(24)

whereB̂a ≡ ∇ ∧ Âa − 1
2rC

ab
c Âb ∧ Âc (the magnetic field) can be interpreted as a ‘correction’

to Âa that, unlikeÂa, transforms homogeneously under the adjoint action ofT (see the
second line of (13)). The components2̂µν(x) of the standard canonical energy–momentum
tensor for Yang–Mills theories are linear combinations of operators in (24); for example,
2̂00(x) = − tr[Ê2(x) + B̂2(x)] is the Hamiltonian density. In this way, Poincaré invariance is
retrieved in the constrained theory. At this stage, it is worth mentioning thatGc would have
included the entire Poincaré algebra had we incorporated the Poincaré group intoG̃ (see [4, 5]
for the Abelian case). However, unlike other standard approaches to quantum mechanics,
GAQ still remains even in the absence of a well defined (space)time evolution, an interesting
and desirable property concerning the quantization of gravity (see, for example, [12]).

Let us mention, for the sake of completeness, that the actual use of good operators is
not restricted to first- and second-order operators. Higher-order operators can constitute a
useful tool in finding the whole constrained Hilbert spaceHphys(G̃). In fact, it can be obtained
from a T̃ -equivariant (physical) state8(0), i.e.Ĝa8

(0) = 0, on which the energy–momentum
tensor has null expectation value〈8(0)|2̂µν |8(0)〉 = 0, by taking the orbit of the rest of good
operators passing through this ‘vacuum’. This has indeed been a rather standard technique (the
Verma module approach) in theories where null vector states are present in the original Hilbert
space [10, 13, 14]. From another point of view, with regard to confinement, exponentials of
the formε62 ≡ tr

[
exp(εjkl

∫
62

dσ jk Êl)
]

andβ62 ≡ tr
[
exp(εjkl

∫
62

dσ jk B̂l)
]
, where62 is

a two-dimensional surface in three-dimensional space, are good operators related to Wilson
loops.

As a step prior to tackling the massive case, let us show how new physics can enter
the theory by considering non-trivial representationsD

(ε)

T̃
of T̃ or, in an equivalent way, by

introducing certain extra pseudo-cocycles in the group law (10).

3.1. ϑ-angle

More general representations for the constraint subgroupT , namely the one-dimensional
representationD(ε)

T̃
(U) = eiεU , can be considered if we impose additional boundary conditions

such asU(x)
x→∞−→± I ; this means that we compactify the space<3→ S3, so that the groupT

falls into disjoint homotopy classes{Ul, εUl = lϑ} labelled by integersl ∈ Z = π3(T )

(the third homotopy group). The indexϑ (the ϑ-angle [7]) parametrizesnon-equivalent
quantizations, in the same way that Bloch momentumε does for particles in periodic potentials,
where the wavefunction acquires a phaseψ(q + 2π) = eiεψ(q) after a translation of, let us
say, 2π . The phenomenon of non-equivalent quantizations can also be reproduced by keeping
the constraint conditionD(ε)

T̃
(U) = 1, as in (18) and (22), at the expense of introducing a

new cocycle (indeed a coboundary)ξϑ which is added to the previous cocycleξ in (10). The
generating function ofξϑ is ηϑ(g) = ϑ

∫
d3x C0(x), whereC0 is the time component of the

Chern–Simons secondary characteristic class

Cµ = − 1

16π2
εµαβγ tr

(
FαβAγ − 2

3AαAβAγ
)

(25)
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which is the vector whose divergence equals the Pontryagin densityP = ∂µCµ =
−(1/16π2)tr(∗FµνFµν) (see [8], for instance). Like some total derivatives (namely, the
Pontryagin density), which do not modify the classical equations of motion when added to the
Lagrangian but have a non-trivial effect in the quantum theory, the coboundaryξϑ gives rise to
non-equivalent quantizations parametrized byϑ when the topology of the space is affected by
the imposition of certain boundary conditions (‘compactification of the space’), even though
it is a trivial cocycle of the ‘unconstrained’ theory. The phenomenon of non-equivalent
quantizations can sometimes also be understood as anAharonov–Bohm-like effect(an effect
experienced by the quantum particle but not by the classical one) and the gradient dη(g) can also
be understood as aninduced gauge connection(see, e.g., [15, 16], and [17] for the example of
a superconducting ring threaded by a magnetic flux) which modifies momenta according to the
minimal coupling. For our case, the induced gauge connectionδηϑ(g) = (ϑr2/8π2)Baj δA

j
a

(Baj is the magnetic field) modifies the momentum operatorsÊa ≡ iX̃RAa → Êa+(ϑr2/8π2)B̂a

and, accordingly, the Schrödinger equation
∫

d3x 2̂00(x)8 = E8 for stationary solutions8
with energyE . As is well known, the theory also exhibits a band energy structure of the
form α + β cosϑ , the ground-state band functional|ϑ〉 =∑l e

ilϑ |0l〉 being a superposition of
wavefunctionals9l(A) = 〈A|0l〉 peaked near the classical zero-energy configurations (pure
gauge potentials)A(l) = Ul∇U−1

l .
As already discussed, only coboundaries generated by functionsη(g) with non-trivial

gradientδη(g)|g=e 6= 0 at the identityg = e (i.e. pseudo-cocycles), namelyξ3 = ξλ, will
provide a contribution to the connection form of the theory (11) and the structure constants of
the original Lie algebra. However, as we have just seen, a coboundary generated by a global
function on the original (infinite-dimensional) groupG having trivial gradient at the identity,
namelyξϑ , can contribute the quantization with global (topological) effects as the new group
has a non-equivalent global multiplication law.

In both cases, non-trivial gauge transformation properties,D
(ε)

T̃
(U) 6= 1, of the

wavefunctional8(A) can be reproduced, as already mentioned, by keeping the trivial
representationD(ε)

T̃
(U) = 1 at the expense of introducing new (pseudo-)cocycles,ξϑ or ξλ, in

the centrally extended group law (10). However, whereasξϑ does not introduce new degrees
of freedom into the theory, pseudo-cocycles such asξλ provide new couples of conjugated field
operators, thus substantially modifying the theory. Let us examine this in more detail.

4. The massive case: ‘spontaneous’ symmetry ‘breaking’ and alternatives to the Higgs
mechanism

The effect of the pseudo-cocycleξ3 ≡ ξλ for λ 6= 0 is equivalent to inducinginternal (‘spinor-
like’) infinite-dimensional non-Abelian representationsD(λ)

T̃
of T̃ . It modifies the commutation

relations (13) and the number of field degrees of freedom of the theory by restricting the number
of vector fields in the characteristic subalgebraGc with respect to the massless case, where
Gc ∼ T . That is, new couples of generators(X̃Rϕa , X̃

R
ϕb
), with Cabc λ

c 6= 0, become conjugated
(see the last commutator of (13)) and, therefore, new basic operators enter the theory. To
count the number of field degrees of freedom for a given structure subgroupT̃ and a given
mass matrixλ = λaT

a, let us denote byτ = dim(T ) and c = dim(Gc) the dimensions
of the rigid subgroups ofT andGc; in general, for an arbitrary mass matrixλ, we have
c 6 τ . Unpolarized,U(1)-equivariant functions9(Aja, E

j
a , ϕa) depend onn = 2× 3τ + τ

field coordinates ind = 3 dimensions; polarization equations introducep = c + (n − c)/2
independent restrictions on wavefunctions, corresponding toc non-dynamical coordinates in
Gc and half of the dynamical ones; finally, constraints imposeq = c + (τ − c)/2 additional
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restrictions which leavef = n−p− q = 3τ − c field degrees of freedom (ind = 3). Indeed,
for the massive case, constraints aresecond classand we can impose only a polarization
subalgebraTp ⊂ T̃ , which contains a characteristic subalgebraTc = 〈X̃Rϕa , with Cabc λ

c = 0

∀b 〉 ⊂ T̃ (which is isomorphic toGc) and half of the rest of generators inT̃ (excluding4)†. In
total,q = c+(τ −c)/26 τ independent constraints, which lead to constrained wavefunctions
having support onfm6=0 = 3τ−c > fm=0 arbitrary fields; these fields correspond tocmassless
vector bosons attached toTc andτ − c massive vector bosons. In particular, for the massless
case, we haveTc = T , i.e.c = τ , since constraints arefirst class(that is, we can imposeq = τ
restrictions) and constrained wavefunctions have support onfm=0 = 3τ − τ = 2τ 6 fm6=0

arbitrary fields corresponding toτ massless vector bosons. The subalgebraTc corresponds
to the unbroken gauge symmetry of the constrained theory and proves to be anideal of G̃good

(remember the characterization ofgoodoperators before equation (24); see also [2, 5] for a
definition and subtle distinctions between constraints and gauge symmetries inside GAQ).

Let us work out a couple of examples. Cartan (maximal Abelian) subalgebras ofT

will be preferred as candidates for the rigid subgroup of the unbroken electromagnetic gauge
symmetry. Thus, let us use the Cartan basis〈Hi,E±α〉 instead of〈T a〉, and denote{ϕi, ϕ±α}
the coordinates ofT attached to this basis (i.e.ϕ±α are complex field coordinates attached
to each root±α, andϕi are real field coordinates attached to the maximal torus ofT ). For
T = SU(2)(x) andλ = λ1H1, the characteristic, polarization and constraint subalgebras
(leading to the electric field representation) are

Gc = 〈X̃Lθ1
〉 G(A)p = 〈X̃Lθ1

, X̃Lθ+1
, X̃LA〉 Tp = 〈X̃Rϕ1

, X̃Rϕ−1
〉. (26)

Indeed, the appearance of a central term in the commutator

[
X̃Rϕ+1(x)

, X̃Rϕ−1(y)

] = iδ(x − y)X̃Rϕ1(x)
+ i
λ1

r2
δ(x − y)4 (27)

prevents the vector fields̃XRθ±1
from being inGc and precludes the simultaneous imposition of

X̃Rϕ−1
9phys= 0 andX̃Rϕ+1

9phys= 0 as constraints (for the trivial representationD(ε)

T̃
(U) = 1),

so that a polarization subalgebraTp is the only option (Tp has to contain the ‘negative modes’
X̃Rϕ−1

when the ‘positive’ ones̃XLθ+1
have been chosen inG(A)p , or the other way round). The

new couple ofbasicoperatorsĜ±1 ≡ X̃Rϕ±1
(these are basic because they can no longer be

written in terms ofÂ andÊ) represent two new field degrees of freedom which are transferred
to the vector potentialŝA±1 to conform massive vector bosons; i.e.Ĝ±1 can be seen as the
longitudinal component of̂A±1, which is missing (is zero) in the massless case. Thus, the
constrained theory corresponds to a self-interacting field theory of a massless vector bosonA1

with ‘unbroken’ gauge subgroupTc = U(1)(x) ⊂ SU(2)(x) and two charged vector bosons
A±1 with mass cubedm3

1 = λ1.
ForT = SU(3)(x) andλ = λ2H2, we have

Gc = 〈X̃Lθ1,2
, X̃Lθ±1

〉 G(A)p = 〈X̃Lθ1,2
, X̃Lθ±1

, X̃Lθ+2,+3
, X̃LA〉

Tp = 〈X̃Rϕ1,2
, X̃Rϕ±1

, X̃Rϕ−2,−3
〉.

(28)

† A similar situation happens in the bosonic string theory, where we can impose as constraints half of the Virasoro
operators (the positive modesL̂n>0) only; that is, the appearance of central terms in the Lie algebra (12) precludes the
whole Virasoro algebra to be imposed as constraints, and only a polarization subalgebra can be imposed consistently.
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Indeed, in this case, the relevant commutators[
X̃Rϕ+1(x)

, X̃Rϕ−1(y)

] = iδ(x − y)X̃Rϕ1(x)[
X̃Rϕ+2(x)

, X̃Rϕ−2(y)

] = i√
3
δ(x − y)X̃Rϕ1(x)

+ iδ(x − y)X̃Rϕ2(x)
+ i
λ2

r2
δ(x − y)4 (29)

[
X̃Rϕ+3(x)

, X̃Rϕ−3(y)

] = −i√
3
δ(x − y)X̃Rϕ1(x)

+ iδ(x − y)X̃Rϕ2(x)
+ i
λ2

r2
δ(x − y)4

reveal that the vector fields̃XRθ±2
and X̃Rθ±3

have dynamical content and cannot be included

in Gc. Also, its conjugated character precludes the simultaneous imposition ofX̃Rϕ−2,−3
and

X̃Rϕ+2,+3
as constraints, and a polarization subalgebraTp has to be chosen. In contrast, the

vector fieldsX̃Rϕ±1
are devoid of dynamical content, as can be seen from the first line of (29),

and can be simultaneously imposed as constraints inTp (this is because of the particular
choice of mass matrixλ, which determines different ‘symmetry breaking’ patterns). As for
T = SU(2)(x), the new couples of basic operatorsĜ±2,±3 ≡ X̃Rϕ±2,±3

represent four new field

degrees of freedom which are transferred to the vector potentialsÂ±2,±3 to conform massive
vector bosons. Thus, the constrained theory corresponds to a self-interacting theory of two
massless vector bosonsA1,2, two massless charged vector bosonsA±1 (the ‘unbroken’ gauge
subgroup is nowTc = SU(2)×U(1)(x) ⊂ SU(3)(x)) and four charged vector bosonsA±2,±3

with mass cubedm3
2 = λ2.

Summarizing, new basic operatorŝG±α ≡ X̃Rϕ±α , with Cα−αi λi 6= 0, and new good

operatorsĈi = {Casimir operators of̃T } (i runs the range ofT ) enter the theory, in contrast
to the massless case. For example, forT = SU(2)(x), the Casimir operator is

Ĉ(x) =
(
Ĝ1(x) +

λ1

r2

)2

+ 2(Ĝ+1(x)Ĝ−1(x) + Ĝ−1(x)Ĝ+1(x)). (30)

Also, the Hamiltonian densitŷ200(x) = − tr[E2(x)+B2(x)] for m = 0 can be affected in the
massive casem 6= 0 by the presence of extra terms proportional to these Casimir operators as
follows:

2̂00
m6=0(x) = 2̂00

m=0(x) +
∑
i

r2

m2
i

Ĉi(x). (31)

Thus, the Schr̈odinger equation
∫

d3x 2̂00
m6=0(x)8 = E8 is also modified by the presence of

extra terms.
As already mentioned in reference to the Virasoro group, pseudo-cocycle parameters such

asλi are usually hidden in a redefinition of the generators involved in the pseudo-extension
Ĝi(x) + λi/r2 ≡ Ĝ′i (x). However, whereas the vacuum expectation value〈0λ|Ĝi(x)|0λ〉
is zero†, the vacuum expectation value〈0λ|Ĝ′i (x)|0λ〉 = λi/r

2 of the redefined operators
Ĝ′i (x) is non-null and proportional to the cubed mass in the ‘direction’i of the ‘unbroken’
gauge symmetryTc, which depends on the particular choice of the mass matrixλ. Thus,
the effect of the pseudo-extension manifests also in a different choice of a vacuum in which
some gauge operators have a non-zero expectation value. This fact reminds us of the Higgs
mechanism in non-Abelian gauge theories, where the Higgs fields point to the direction of
the non-null vacuum expectation values. However, the spirit of the Higgs mechanism, as an

† It can be easily proven taking into account that the vacuum is annihilated by the right version of the polarization
subalgebra dual toGp [18]; also,Ĝi = X̃Rϕi is always inTp ; that is, it is zero on constrained wavefunctionals9phys,
including the physical vacuum.
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approach to supply mass, and the one discussed in this paper are radically different, even
though they have some common characteristics. In fact, we are not making use of extra
scalar fields in the theory to provide mass to the vector bosons, but it is the gauge group itself
that acquires dynamics for the massive case and transfers degrees of freedom to the vector
potentials.

Before finishing, let us show how to incorporate fermionic matter into the theory and
outline the main changes in the foregoing discussion had we considered it from the beginning.

5. Incorporating fermionic matter

Fermionic matter can enter the theory through extra (Dirac) field coordinatesψl(x), l =
1, . . . , p, which we can assemble into a column vectorψ(x), and an extra cocycleξmatter

leading to a quantizingsupergroupS̃G. The group law that describes this boson–fermion
gauge theory is (10) together with

ψ ′′(x) = ψ ′(x) + ρ(U(x))ψ(x)

ψ̄ ′′(x) = ψ̄ ′(x) + ψ̄(x)ρ(U(x)−1) (32)

ξmatter≡ i
∫

d3x
(
ψ̄ ′γ 0ρ(U ′)ψ − ψ̄ρ(U ′−1)γ 0ψ ′

)
whereρ(U) is ap-dimensional representation ofT acting on the column vectorsψ , andγ 0 is
the time component of the standard Dirac matricesγ µ. To compute the left- and right-invariant
super-vector fields̃XL,R and the polarized super-wavefunctionals9(A,E,U,ψ, ψ̄; ζ ), we
have to take into account the Grassmann character of the Dirac field coordinates. The unitary
irreducible representations of̃SG can easily be constructed by following the main steps
described in this paper and by taking care of the subtleties introduced by the anti-commutation
of Grassmann variables (see [19] for the finite-dimensional example of the super-Galilei group
S̃G(m)). We should mention that, in the presence of fermion sources, the infinitesimal version
of the constraint (18), i.e. the Gauss law, is modified to

Ĝa8A,ψ(E, ψ̄) =
(
−1

r
∇ · Êa − Cabc Êb · Âc −

i

r

ˆ̄ψγ 0τaψ̂

)
8A,ψ(E, ψ̄) = 0 (33)

(whereτa denote the generators ofρ) in accordance with other standard approaches. Other
interesting questions such as chiral anomalies are left to future publications.

6. Some comments and outlook

One question which is worthwhile to comment upon is the preservation of renormalizability
for a non-trivial mass matrixλ 6= 0. Since our approach to quantization is not perturbative,
we must answer this question using general arguments. In fact, from a group-theoretical
point of view, there is no reason why a given unitary irreducible representation of a group
G̃ (namely, the massive one) can show bad properties, such as ‘inescapable divergences’,
whereas others (namely, the massless one) do not. Even more, when we use the term ‘unbroken
gauge symmetry’, in referring toTc, we mean simply the subgroup ofT̃ devoid of dynamical
content; the gauge group of the constrained theory is, in both the massless and massive cases,
the groupT = T̃ /U(1), although, for the massive case, only a polarization subgroupTp
can be consistently imposed as a constraint. This is also the case of the Virasoro algebra
(12) in string theory, where the appearance of central terms does not spoil gauge invariance
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but forces us to impose half of the Virasoro operators only (the positive modesL̂n>0) as
constraints.

Thus, the ‘spontaneous breakdown’ of the gauge symmetry groupT manifests through
non-trivial transformations of the phaseζ of the wavefunctional9 under the action ofT ,
leading to the appearance of new ‘internal’ field degrees of freedom which modify the ‘field
mass content’ of some vector potentialsA, depending on the choice of mass-matrix elements
λi = −2 tr(T iλ). This situation recalls the important physical implications ofgeometric
phases(namely, Berry’s phase) in quantum mechanics, the case discussed in the present paper
being a particular one. In other words, the presence of mass is detected by the wavefunctional
9 in its ‘gauge excursions’ through the configuration space, as happens with the presence
of monopoles (see [15, 16] for a discussion on the emergence of gauge structures—the ‘H -
connection’—and generalized spin when quantizing on a coset spaceG/H ). Also, the zeros
(critical values) of the mass-matrix elementsλi correspond to different phases of the physical
system characterized by the corresponding unbroken gauge symmetryTc; thus, the system
can undergo ‘spontaneous’ phase transitions between different phases corresponding to non-
equivalent fibrations̃T of T by U(1) (i.e. different choices of characteristic subgroupsTc of
T̃ ).

Open questions remain about what happens when a ‘true’ cocycleξ3 exists; for example,
we can find non-trivial central extensions̃T of T = Map(S1,T ) by U(1) (Kac–Moody
groups) in one compact spatial dimension, deformations which correspond to anomalous
situations in the standard (canonical) approach to quantization of gauge theories. This
fact makes the quantization of ‘massive’ Yang–Mills fields (in this scheme) not so trivial,
even in one spatial dimension. Also, it would be worth exploring the richness of the case
T = SU(∞) (infinite number of colours), the Lie algebra of which is related to the (infinite-
dimensional) Lie algebra of area-preserving diffeomorphisms of the sphereSDiff(S2) (see [20]
and references therein). In general, the cohomological richness, i.e. the number of inequivalent
central (pseudo-)extensions, ofT = Map(M,T ) depends on the topology ofM. Also, as
usually happens with central charges, a quantization of the mass parametersmc ∼ (n)1/3,
n = 1, 2, 3, . . . could arise from the compact character of the involved manifolds.

Another question that deserves further study is, of course, the physical implications that
this new point of view carries along.

Appendix. A (0 + 1)D analogy

This appendix is intended to clarify ideas by providing a simple, but illustrative, quantum
mechanical analogy which contains most of the essential elements exposed in the paper.
Indeed, aSU(2) gauge invariant Yang–Mills theory in(0 + 1)D may eventually be related
to a spinning particle with constraints (zero total angular momentum) inside the present GAQ
framework.

Let us denote byA ≡ r
(
A0 A+
A− −A0

)
, A0 ≡ A3, A± ≡ A1 ± iA2 the su(2)-valued vector

potentials, and let us choose the following set of coordinates:

eiϕ0 ≡ z1

|z1| ϕ+ ≡ z2

z1
ϕ− ≡ z∗2

z∗1
eiϕ0 ∈ S1 ϕ+, ϕ− ∈ S2 (A1)

for the gauge group

SU(2) ≡
{
U =

(
z1 z2

−z∗2 z∗1

)
, zi, z

∗
i ∈ C/ det(U) = |z1|2 + |z2|2 = 1

}
. (A2)
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Let us also work in an holomorphic picture and defineQ ≡ 1√
2r
(A+iE) andQ̄ ≡ 1√

2r
(A−iE).

The adjoint action of the gauge group on the vector potentialA and the electric fieldE can be
written explicitly as

UQU−1 = 1

1 +ϕ+ϕ−

(
eiϕ0 ϕ+eiϕ0

−ϕ−e−iϕ0 e−iϕ0

)(
Q0 Q+

Q− −Q0

)(
e−iϕ0 −ϕ+eiϕ0

ϕ−e−iϕ0 eiϕ0

)
(A3)

and the centrally extended group law (10) now adopts the form

U ′′ = U ′U
Q′′ = Q +U−1Q′U

Q̄′′ = Q̄ +U−1Q̄′U

ζ ′′ = ζ ′ζ exp
1

4
tr

[
(Q Q̄)S

(
U−1Q′U

U−1Q̄′U

)]
exp 2iλ(ϕ′′0 − ϕ′0 − ϕ0)

(A4)

where we miss the mixed cocycleξ2 because we are working in zero spatial dimensions (we
are restricting ourselves to a ‘single point’). We are also keeping only the (relevant) linear
term λϕ0 in the expansion of tr[λσ3 logU ] (σ3 is the standard Pauli matrix). The left- and
right-invariant vector fields are explicitly

X̃Lζ = X̃Rζ = ζ
∂

∂ζ

X̃LQ =
∂

∂Q
+ 1

2Q̄ζ
∂

∂ζ
X̃L
Q̄
= ∂

∂Q̄
− 1

2Qζ
∂

∂ζ

X̃Lϕ0
= ∂

∂ϕ0
− 2iϕ+

∂

∂ϕ+
+ 2iϕ−

∂

∂ϕ−
− 2

(
Q× ∂

∂Q

)
0

− 2

(
Q̄× ∂

∂Q̄

)
0

X̃Lϕ+
= −i

2
ϕ−

∂

∂ϕ0
+

∂

∂ϕ+
+ ϕ2
−
∂

∂ϕ−
+ i

(
Q× ∂

∂Q

)
−

+

(
Q̄× ∂

∂Q̄

)
−

+ λϕ−ζ
∂

∂ζ

X̃Lϕ− =
i

2
ϕ+

∂

∂ϕ0
+ ϕ2

+
∂

∂ϕ+
+

∂

∂ϕ−
− i

(
Q× ∂

∂Q

)
+

− i

(
Q̄× ∂

∂Q̄

)
+

− λϕ+ζ
∂

∂ζ

(A5)

X̃RQ = U
∂

∂Q
U−1− 1

2UQ̄U
−1ζ

∂

∂ζ

X̃R
Q̄
= U ∂

∂Q̄
U−1 + 1

2UQU
−1ζ

∂

∂ζ

X̃Rϕ0
= ∂

∂ϕ0

X̃Rϕ+
= i

2
e−2iϕ0ϕ−

∂

∂ϕ0
+ e−2iϕ0(1 +ϕ+ϕ−)

∂

∂ϕ+
− λe−2iϕ0ϕ−ζ

∂

∂ζ

X̃Rϕ− = −
i

2
e2iϕ0ϕ+

∂

∂ϕ0
+ e2iϕ0(1 +ϕ+ϕ−)

∂

∂ϕ−
+ λe2iϕ0ϕ+ζ

∂

∂ζ

where (A × B)a ≡ εabcAbBc, ε
123 = 1, denotes the vector product and(A × B)± ≡
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(A× B)1± i(A× B)2. The commutators (13) now adopt the following form:[
X̃RQ+

, X̃R
Q̄−

] = −i4
[
X̃RQ− , X̃

R

Q̄+

] = −i4
[
X̃RQ0

, X̃R
Q̄0

] = −i4[
X̃Rϕ0

, X̃Rϕ+

] = −2iX̃Rϕ+

[
X̃Rϕ0

, X̃Rϕ−

] = 2iX̃Rϕ−
[
X̃Rϕ+

, X̃Rϕ−

] = −iX̃Rϕ0
− 2iλ4[

X̃Rϕ0
, X̃RQ0

] = 0
[
X̃Rϕ0

, X̃RQ+

] = −2iX̃RQ+

[
X̃Rϕ0

, X̃RQ−

] = 2iX̃RQ−[
X̃Rϕ+

, X̃RQ0

] = 2X̃RQ+

[
X̃Rϕ+

, X̃RQ+

] = 0
[
X̃Rϕ+

, X̃RQ−

] = −X̃RQ0[
X̃Rϕ− , X̃

R
Q0

] = 2X̃RQ−
[
X̃Rϕ− , X̃

R
Q+

] = −X̃RQ0

[
X̃Rϕ− , X̃

R
Q−

] = 0

(A6)

where we have omitted the commutators
[
X̃Rϕ0,ϕ+,ϕ− , X̃

R

Q̄j

]
, which have the same form as for

theX̃RQj
vector fields. One can also work out easily thequantization 1-form(11), which is

2 = i

4
tr[D̄dD −DdD̄] +

2SU(2)︷ ︸︸ ︷
iλ

1 +χ+χ−
(χ−dχ+ − χ+dχ−)−iζ−1dζ (A7)

where we denoteD ≡ UQU−1, D̄ ≡ UQ̄U−1, χ+ ≡ e2iϕ0ϕ+, χ− ≡ e−2iϕ0ϕ−. The
characteristic subalgebrais just

Gc = 〈X̃Lϕ0
〉 (A8)

and a full-polarization subalgebra exists for arbitrary (non-zero)λ, which is

Gp = 〈X̃Lϕ0
, X̃Lϕ+

, X̃LQ〉. (A9)

The general solution to the polarization equationsX̃L9 = 0, X̃L ∈ Gp leads to a Hilbert space
H(λ)(G̃) of wavefunctions of the form

9(λ)(ζ, ϕ0, ϕ+, ϕ−,Q, Q̄) = ζ(1 +ϕ+ϕ−)−λe−
1
4 tr[Q̄Q]8(χ−, D̄) (A10)

where8 is an arbitrary power series in the variablesχ− andD̄. A scalar product can be given
through the invariant integration volume ofG̃:

µ(g̃) = −i

(1 +ϕ+ϕ−)2

[ 3∏
a=1

dAa ∧ dEa

]
∧ [d Re(ϕ+) ∧ d Im(ϕ+) ∧ dϕ0

] ∧ ζ−1dζ. (A11)

The phase space related to this quantum system is clearly<3 × <3 × S2, as can be inferred
from the symplectic formω ≡ d2/Gc (the quotient of d2 by the trajectories generated by
left-invariant vector fields in (A8)), the parameterλ being the analogous of the spins.

The constraint equations

X̃Rϕ0
9
(λ)

phys= 0 ⇒ χ−
∂8

∂χ−
+ i

(
D̄ × ∂8

∂D̄

)
0

= 0

X̃Rϕ−9
(λ)

phys= 0 ⇒ ∂8

∂χ−
+ i

(
D̄ × ∂8

∂D̄

)
+

= 0

(A12)

keep two degrees of freedom out of the original 4= 3 + 1 corresponding to this ‘spinning-like
particle’. They can be interpreted as zero total angular-momentum (orbital + spin) conditions.
Note that the condition

X̃Rϕ+
9
(λ)

phys= 0 ⇒ −2λχ−8 + χ2
−
∂8

∂χ−
− i

(
D̄ × ∂8

∂D̄

)
−
= 0 (A13)
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is incompatible with both conditions in (A12), which correspond to a polarization subalgebra
Tp = 〈X̃Rϕ0

, X̃Rϕ−〉ofT , unlessλ = 0. Forλ = 0, the characteristic subalgebra (A8) contains the
wholesu(2) subalgebra,8 does no longer depend onχ−, and the constraint conditions (A12)
and (A13) keep a ‘radial’ dependence of8 onR2 ≡ 1

2 tr[DD̄] (‘s-waves’), as corresponds to
a spin-zero particle with zero orbital angular momentum.

The good operators are

G̃good= 〈tr[Q̂2], tr[ ˆ̄Q2], tr[Q̂ ˆ̄Q], Ĉ, 4〉 (A14)

whereĈ = (X̃Rϕ0
+ 2λ4)2 + 2X̃Rϕ+

X̃Rϕ− + 2X̃Rϕ−X̃
R
ϕ+

is the Casimir operator ofSU(2).
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Note added. We thank the referee who brought [16] to our attention. It contains a nice summary of a generalization of
Dirac’s method of quantization of constrained systems by using Mackey’s theory of inequivalent quantizations on a
coset spaceG/H . The reader may find it interesting to compare GAQ and this generalized version of Dirac’s approach
by using the simple example given in the appendix. Both approaches share the idea of ‘emergence of new (internal)
degrees of freedom, existence of inequivalent quantizations and the appearance of anH -connection’ when constraints
become second class. In fact, the role played by the characteristic subgroupGc in GAQ is similar to the role played by
H when quantizing on a coset spaceG/H ; also, the piece2SU(2) = ∂

∂gj
ξ(g′|g)λ|g′=g−1 dgj of the general connection

form (11) in equation (A7) corresponds to a ‘SU(2)-connection’. However, an important distinction has to be made
between both schemes of constrained quantization. The counterpart of the constraint equations (right conditions)

Rh9(g) = 9(g ∗ h) ≡ 9(g) ∀h ∈ H g ∈ G
in the generalized Dirac’s approach to the constrained quantization onG/H , are the polarization equations of GAQ
(see the paragraph before equation (14)) which, in contrast, are intended toreducethe (left) regular representation
Lg′9(g) = 9(g′ ∗ g) ofG on wavefunctions9. In brief, GAQ further ‘constrains’ wavefunctions by means ofextra
T -equivariance conditions (8) like (A12), which are not present in the generalized Dirac’s scheme of quantization.
Also,T -equivariance conditions in GAQ force the definition ofgood operators(observables), concept which is absent
in the other scheme.
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