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Abstract. New clues for the best understanding of the nature of the symmetry-breaking
mechanism are revealed in this paper. A revision of the standard gauge transformation properties
of Yang—Mills fields, according to a group approach to the quantization scheme, enables the gauge
group coordinates to acquire dynamical content outside the null mass shell. The corresponding
extra (internal) field degrees of freedom are transferred to the vector potentials to conform massive
vector bosons.

1. Introduction

Despite the undoubted success of the standard model in describing strong and electro-weak
interactions, aeal (versus artificial) mechanism of mass generation is still lacking. Needless

to say that the discovery of a Higgs boson—a quantum vibration afbavormal (Higgs)
vacuum—would be of enormous importance; nevertheless, at present, no dynamical basis
for the Higgs mechanism exists, and it is purely phenomenological. It is true that there is
actually nothing inherently unreasonable in the idea that the state of minimum gfgrgy

(the vacuum) may be one in which some field quangity) has a non-zero expectation value
(01¢(x)|0) = go; in fact, many examples in condensed-matter physics display this feature.
Nevertheless, it remains conjectural whether something similar actually happens in the weak
interaction case.

Also, thead hocintroduction of extra (Higgs) scalar fields in the theory to provide mass
to the vector bosons could be seen as our modern equivalent of those earlier mechanical
contrivances populating thelenum(the ether), albeit very subtly. As in those days, new
perspectives are necessary to explain why it is really not indispensable to look at things in this
way at all.

This paper provides a new approach to quantum Yang—Mills theories, from a group-
theoretic perspective, in which mass enters the theorynataral way; more precisely, the
presence of mass will manifest through non-trivial transformations of the ghase® of the
wavefunctionall (A) under the action of gauge transformations. This non-trivial response of
the phase under gauge transformations caudefoamatiorof the corresponding Lie-algebra
commutators and leads to the appearance of central terms proportional to mass parameters and,
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consequently, to a quantum generation of extra (internal) field degrees of freedom according
to a self-interacting theory of massless and massive vector bosons (without Higgs fields).

This cohomologicalmechanism of mass generation makes perfect sense from a group
approach to quantization (GAQ [1]) framework, and we shall use its concepts and tools to
work out the quantization of Yang—Mills theories. Given that this is not a common approach
to quantization, we shall give useful references and try to be as self-contained as possible (the
reader is advised to have alook at [2], which contains a general presentation of GAQ for linear
fields). Quantizing on a group, however, will require the revision of some standard concepts,
such agyauge transformationdn order to deal with them properly. The meaning of gauge
transformations in quantum mechanics is not well understood at present (see, for example,
[3]); thus, a re-examination of it is timely.

Gauge symmetry is always a guarantee of the renormalizability of a field theory. The
introduction of mass usually spoils gauge invariance, but the Higgs mechanism manages
to preserve renormalizability by keeping gauge invariance fiddenway, and this is the
main novelty in comparison with other attempts to supply mass. However, we must say
that the breakdown of a gauge symmetry and the appearance of anomalous (unexpected)
situations are sometimes subtle questions which generally go with the standard approach
of quantizing classical systemd-rom a group-theoretic framework, any consistent (non-
perturbative) quantization is just a unitary irreducible representation of a suitable (Lie, Poisson)
algebra. This approach does not assume the existence of a previous classical underlying system
and overcomes some of the standard failures in quantization (anomalies) attached to canonical
gquantization, reinterpreting them as normal (even essential) situations.

A unified quantization of massless and massive non-Abelian vector bosons will be
presented in sections 3 and 4, respectively; the Abelian case (electromagnetic and Proca
fields) is discussed briefly in section 2. The Hilbert space of the theory is related to the
carrier space of the unitary irreducible representations of an infinite-dimensjoaatizing
group G, the mass eventually being a parameter characterizing the representation. Section
5 is devoted to the incorporation of fermionic matter into the theory. Finally, we conclude
in section 6 and incorporate an appendix with a simple, but illustrative, finite-dimensional
analogy.

2. The Abelian case

In a previous article [4], a revision of the traditional concept of gauge transformation for the
electromagnetic vector potential,

p(x) = ¢'(x) +(x) Au(x) = Ap(x) — 9,9’ (x) @)

was necessary to arrange this transformation inside a group law, i.e. to adapt this operation
to an action of a group on itself: the group law of the (infinite-dimensioslajtromagnetic
quantizing grouf;. The proposed Lie grou@ had a principal bundle structuée — G /T and
was parametrized, roughly speaking, by the coordinajgs, ) of the Abelian subgroug 4
of Lie-algebra-valued vector potentials, the coordinates(y,,, A,.) (Spacetime translations
and Lorentz transformations) of the PoinegroupP and the coordinates(x, ¢) of the local
groupT = U(1)(X, 1), which took part of the structure grodp~ T x U (1) and generalized
the standard/(1)-phase invariancey ~ €W, in quantum mechanics. In this way, the
extra T-equivariance conditions on wavefunctions (complex-valued functio¢ on G),
i.e.W(g %) ~ W(g), & T, provided the traditional constraints of the theory.

The above-mentioned revision was motivated by the fact that the transformation (1) is not
compatible with a group law. Indeed, the general propgrty = e x g = g for a composition
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law g” = g’ x g of a groupG (e denotes the identity element), precludes the existence of linear
terms, in the group law”’ = g"/ (g%, g") of a given parametey’ of G, other tharg’/ andg/;

that is, near the identity we hagé/ = g’/ + g/ + 0(2). Therefore, the group law for the field
parameterd,, cannot have linear terms in. The natural way to address this situation is to
leave the vector potential unchanged, and change the phas# of the quantum-mechanical
wavefunctionalV (A) as follows:

P(x) = @(x) +¢'(x) Au(x) = Au(x),

¢ — cexp{—'—_2 / doy, (x) n”“apwx)ama(x)} @)
2ch® Js

wheren?’ denotes the Minkowski metri@; denotes a spatial hypersurface arid the Planck
constant, which is required to kill the dimensionsdf'9*A? = 9,¢'0,A? — AP9,0,¢’
and gives aquantumcharacter to the transformation (2) versus t¢hassicalcharacter of (1)

<>
(hereafter, we shall use natural unities= 1 = ¢). The pieced,¢’d" A® takes part of a
symplecticcurrent

Jh(g'g)(x) = %np”[(vA’)p(X) — 3, (vp) ()] [As (x) — I (x)] 3)
(we are denotingg = (A4, ¢, v) and (vA),(x) = %A;(v(x)), we)(x) = ¢ (v(x)),
with v¥(x) = Agxﬁ + y* the general action of the restricted Poirecagroup P on

Minkowski spacetime) which is conservell,J* = 0, if A, andg satisfy the field equations
(0,0" +m?)A, = 0 and(d,d" + m?)p = 0 (m is a parameter with mass dimension), so
that the integral in (2) does not depend on the chosen spacelike hypersurfabe integral
£(g'g) = fz do, (x) J*(g'|g)(x) is a 2-cocyclé& : G x G — R (G denotes the semi-direct
product(G,4 x T) x, P), which fulfils the well known properties:

£(g'1g) +E(g' *glg") = E(g'lgxg") +E(glg") vg.g' 8" €G
E(gle) =0==E&(elg) VgeG

and is the basic ingredient to construct the centrally extended group’law g’ * g, more
explicitly

g'=(¢) =g *g: ('t g g g"eG I, {"eUQ ()

of the electromagnetic quantizing grogp(see below and [4] for more details).

It bears mentioning that the required revision of the concepts of gauge transformations
and constraint conditions to construct the quantizing gréuppas led, as a byproduct, to a
unified quantization of both the electromagnetic and Proca fields [4], within the same general
scheme of quantization based on a group (GAQ) [1]. The different structure of the central
extension (5) for the massive case, with regard to the massless case, manifests itself through
a true (non-trivial) central-extensioff’ of the constraint subgroup by U (1) given by the
piece

(4)

En(g'lg) = %/ doy, 1778, (ve") 3" 8,9 = %mZ/ do, (v 3" (6)
z )

of the cocyclé (g'|g) = /5 do, J*(g'lg). The piecé,,, which is one £&) of the three typical

and distinguishable pieces;( j = 1, 2, 3) in which£ splits up (see [4, 5] and below), gives
dynamics to the local group (creates new couples of conjugated variables), and makes the
constraints of second-class nature. This results in an increased number of field degrees of
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freedom with regard to the massless case, leading to a Proca quantum field (see [4] for more
details).

Furthermore, the standard (classical) transformation (1) is regained as the trajectories
associated with generalized equations of motion generated by vector fields with null Noether
invariants gauge subalgebtaee [2, 4] and [5] for a formal exposition, including tensor fields).

A unified scheme of quantization for non-Abelian massless and massive vector bosons
is also possible in this scheme and suitable as an alternative to the standard spontaneous
symmetry breaking mechanism, which is intended to supply mass while preserving
renormalizability. However, for this case, the situation seems to be a bit more subtle and
far richer.

3. Group quantization of Yang—Mills fields

According to the headings in the foregoing section, our main purpose now is to offer a
reasonable attempt to find a (non-perturbative) unified quantization of non-Abelian massless
and massive vector bosons without Higgs fields. As in the Abelian case, the key to achieving
this goal consists in a revision of the traditional concept of gauge transformation for vector
potentials,

U(x) = U'(x)U(x) Ay(x) = U'®A,@U )+ U ®)0,U'(x)™! 7

in order to make it compatible with a group law: the group law of the (infinite-dimensional)
Yang—-Mills quantizing groug, which will be the primary object to define the quantum theory.
This group has a fibre-bundle struct@fe—~ G/T and is parametrized, roughly speaking, by
the coordinated” (x) = rabAZ(x)T“ of an Abelian subgroug 4 of Lie-algebra-valued vector
potentials £© is a coupling-constant matrix arff’ are the Lie-algebra generators of the rigid
subgroupT’, of a gauge grouT, satisfying the commutation relationgq, 7%] = C%T1¢

and defining the structure constant¥’) and the coordinateg (x) = 7" = /™ of the
local group T', which takes part of the structure subgrollp~ T x U(1) and generalizes
the standard/ (1)-phase invarianc& ~ €*W in quantum mechanics as a particular case of
T -equivariancecondition [6]

V(g3 =D@)WQE  VaieT VieG ®)

on complex wavefunctional¥ : G — C defined onG, WhereD(;) symbolizes a specific

representatio of T with e-index (in particular, the = #-angle [7] of non-Abelian gauge
theories; see below). As already commented, Ehequivariance conditions (8) provide the
traditionalconstraintsof the theory, which will be first- or second-class depending on whether
the fibration of the structure subgrolip— 7 /U (1) by U (1) is trivial or not gn = 0 orm # 0,
respectively; see below).

As mentioned above in the Abelian case, the transformation (7) is not compatible with
a group law. The natural way to adapt the operation (7) to an action of a group on itself is
to consider thatd, transforms homogeneously under the adjoint actioi’ pfvhereas the
non-tensorial part/ (x)d,U’(x)~* modifies the phase = € of the wavefunctionall (A)
according to

Ux) = U'(x)U(x) Ay(x) > U'(x)A,(x)U'(x)7*

¢ exp{# /E dau(x)tr[U’(x)—lavU’(x)ﬁtA“(x)]}. 9)
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We are restricting ourselves, for the sake of simplicity, to gauge grupssociated with
rigid special unitary group® for which the structure constan®$® are totally anti-symmetric,
and the anti-Hermitian generatdr$ can be chosen such that the Killing—Cartan metric is
just tr(TT?) = —%8“”. For simple groups, the coupling-constant matfjxreduces to a
multiple of the identityr? = rs%, and we haved;, = —(2/r)tr(T*A*). The argument of
the exponential in (9) can be considered to be a piece of a 2-cogyclé x G — R (G
is the semi-direct produat = G, xy T of T and the Abelian grouie 4 of Lie-algebra-
valued potentials) constructed through a conserved cug€sitg) = fz do, (x) J*(g'|g) (x),
g, ¢ € G, so that it does not depend on the chosen spacelike hypersirfésse [2, 5]). On
this basis, let us construct a central extengibof G by making use of a 2-cocycle defined
on the particular = constantz-hypersurface. We shall also make partial use of the gauge
freedom to set the temporal compongfit= 0, so that the electric field is S|mpE/a = —00Aq
(from now on, and for the sake of simplicity, we shall put any 3- vedtasA, and understand
AE = Z?:l AJE’, in the hope that no confusion will arise). In this case, there is still a
residual gauge invariande = Map(i3, T) (see [8]).

The explicit group lawg” = g’ = g (with g = (g;¢) = (A, E, U; ¢)) for the proposed
infinite-dimensional¥ang—Mills quantizing groug is

U'(x) =U'(x)U(x)
A'(x) = A'(x) + U () A(x)U'(x)~*
E'(x)=E'(x)+U (x)Ex)U' (x)™*

" 4 I 3 / ! /
¢ =§§exp{—r—zzsj(A,E,U |A, E, U)}

=1
| U'AU (10)
&(gﬂg)z/d%ctr [( A E )S< —— )}
Y o U'vuu-tut
£:(g |g):/dxtr [( vU'U E )S( S — )]

£3(g'|g) = —2/ d3x tr[A(log(U'U) — logU’ — log U)]

whereS = (f)l é) is a symplectic matrix and = A,7“ is a linear function (a matrix) on the

Cartan subalgebra of the rigid subgrdlipf 7.

We have split up the 2-cocyckeinto three significantly distinguishable 2-cocyclgs
Jj =1,2,3 (as in [4,5]) for a much better understanding. The first 2-cocycle meant to
providedynamicgo the vector potential, so that the péit, E) corresponds to a canonically
conjugate pair of coordinates. The second 2-coc§glehemixed2-cocycle, provides a non-
trivial (non-diagonal) action of the structure subgrdipn vector potentials and determines
the number of degrees of freedom of the constrained theory; it is the non-covariant analogue of
the argument of the exponential in (9). Both cocycles correspond to the analogous ones of the
Abelian case. Concerning the third oe = &;, its origin and nature departs essentially from
the Abelian ‘analogue’ (6). Unlike the Abelian caBe= U (1)(x), the semi-simple character
of T precludes drue central extensiol of T = Map(%3, T') by U (1) (this is not the case in
one compact spatial dimensidt¥ < S, where true central extensions are known for Kac—
Moody groups). However, there exists certain coboundaries, gadleddo-cocyclesvhich
define trivial extensions as such, but provide new commutation relations in the Lie algebra of
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G and provide a non-trivial piece of ttennection fornof the theory [1],

0= -i@lp|  dgl s (1)
& g=¢t
thus altering, in particular, the number of degrees of freedom of the theory (see [9] for a
relationship betweepseudo-cohomologndcoadjoint orbitsof semisimple groups). This is
precisely the case of the third cocycle (coboundary, indée@),|g) = n(g’'xg)—n(g)—n(g),
generated by a function(g) = —2 [ d®x tr[x log U] with non-trivial gradientn(g)l,=. =
8n(g)/3gj|g:e8gj # 0 at the identityg = e, which is locally linear in the parameters of
the Cartan subgroup with as many independent coefficients (constarts)elements in the
Cartan subalgebra, i.e. the range of the rigid gr@upThe introduction of such a pseudo-
cocycle is needed to obtain a faithful representation of the rigid subdfpugzcording to
our general group representation approach. Pseudo-cocycles simjladdoappear in the
representation of Kac—Moody groups and in conformally invariant theories in general, although
the pseudo-cocycle parameters are usually hidden in a redefinition of the generators involved
in the pseudo-extension (the argument of the Lie-algebra generating function). This is the case
of the Virasoro algebra in string theory,

[I:ns ]:m] = (Vl - m)l:n+m + 1/12(6‘713 - C/n)an,—mi (12)

where theLo generator is redefined so as to produce a non-trivial expectation value in the
vacuumjh = (¢ — ¢’)/24 [10].

The cocyclets, however, forh # 0, again determines the structure of constraints (first-
or second-class) and modifies the dynamical content of the vector potential coordirates
transferring degrees of freedom betweenAhendy coordinates. As in the Abelian case, this
mechanism conforms massive vector bosons sasgratst be considered aswass cocycle
In this way, the appearance of mass in the theory hesh@mological origin Notice that
the parametek (A,) bears the dimensions of cubed mass (in natural unities) and can well be
renamed byn® (m3).

To make more explicit the intrinsic significance of these three quaniifies= 1, 2, 3,
let us calculate the non-trivial Lie-algebra commutators of the right-invariant vector fields (that
is, the generators of the left-actidry (§) = &' * § of G on itself) from the group law (10).
They are explicitly

(X% ALy’ E*( = —5%8;18(x — y)E

XE = —C%s XE 15“”v b B
[ E,(x) wb(y)] = = MXE ; WO —y)E 13)
R
[XX, o Xy o] = —CEP8(x = XX ()
)\'C
b ab —
[ Pa(x)? %())] ¢ 8(x — y)X<p )~ C; r—25(x —y)&E

where we denote b = iX! = iX} the central generator, in order to distinguish it from
the rest, in view of its crucial role in the quantization procedure; it behaves as i times the
identity operatorEW (g) = iV (g), when theU (1) part of theT -equivariance conditions (8),

DY (¢) = ¢ (always faithful, except in the classical linGit(1) — 9 [1]), is imposed. The
commutators (13) agree with those of [8] when= 0 and the identificatiorf, = if(R

A, |X§ G, = |XR is made (note thaXR ~ §/8A, andXR ~ §/8E, near the |dent|ty

elementg = e of G, WhICh motivates this part|cular |dent|f|cat|on). From the last line of
(13) we realize that the pseudo-cocyéleintroduces new central terms proportional to the
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mass parameteis = m?, with respect to the massless case, which provide new ‘conjugated’
coordinates; that is, extra degrees of freedom enter the theory through this pseudo-extension,
which provides dynamics to the local (gauge) coordinatesf the structure subgroup,
dynamics which is transferred to the vector potentigl4o conform massive vector bosons.

To understand fully the last statement concerning the interplay among different cocycles
and mainly between the massless and massive cases, we must construct the Hilbert space of
both theories explicitly. Let us proceed with the massless case and leave the peculiarities of
the massive one to the next section.

The representatiohy W(g) = W(g' * g) of G onT-equivariant wavefunctions (8) proves
tobe reducible. The reduction can be achieved by means of those right conditions (‘polarization
conditions’ [1]) R, ¥ (g) = V(' * §,) = W(g") V&' € G compatible with thel -equivariant
conditions (8), in particular wittEWw = iW. In general, polarization conditions contain finite
right transformations generated by left-invariant vector figidsdevoid of dynamical content
(that is, without a conjugated counterpart), and half of the left-invariant vector fields related
to dynamical coordinates (either ‘positions’ or ‘momenta’). The left-invariant vector fields
without conjugated counterpart are the combinations

. . 1 .
G = <X9L =X —=v. X, . /Cc =0 Vb>. (14)
a a r a
Thecharacteristic subalgebrd. can be completed tofall polarization subalgebra,, in two
different ways:
G\M = (X; €G., X5, vb)  GF = (X} €G., X[, Vb) (15)

each one giving rise to a different representation space: (a) the electric field representation and
(b) the magnetic field representation, respectively.

(a) The electric field representatiohy,

The solution to the polarization conditio®s, WA(g) = Wa(), Vg, € GV, Vg € G or, in
infinitesimal formX* W, = 0,vX" € G\, proves to be

WA(A, E, Us §) = e/ AUVl g (E) (16)
where ®, is an arbitrary functional ofz. The left-action of a general elemegt =
(A, E', U’; ') of G on wavefunctionsb , is

~ o6 /1+2) [ 43 i Lo r-lor pal Al g
Lg/‘I’A(g)=§/Ce 2(i/r?) [ Bx r[AVEU U VU E+ S AE]

x @ i/ [ @xUAE-UVUEl g (B 4 [ EU'TY, 17)

The particular case ¢f = g/ =(0,0,U";1) e T c T gives us the expression of the rest of
T-equivariant conditions (8), i.e. thmnstraint equations

Pl 5/ = —2(i/r X ~lyy / —
Ly Wa@) = DY (@)Wa(3) = Pu(E) = e 20/ [V VU E g, (y'EU'™) (18)

where we have chosen the trivial representa@ﬁ = 1 for T (see below for more general
cases).

The golarizedf"-equivariant wavefunctions (16) and (18) define the constrained Hilbert
spaceH(G) of the theory, and the infinitesimal formgw of the finite left-actionL 3 W (g)

of G onH(G) provides the action of the operatofs, £,, G, on wavefunctions. Thus, the
group G is irreducibly and unitarily represented with respect to the natural scalar product
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(W|W) = fG w(@)W*(Z)V' (%), wherew(g) denotes the standard left-invariant measuré of
(exterior product of the components of the left-invariant 1-férm.
The infinitesimal form of the finite expressions (17) is

XR Wy = e/ EUAL-UVUREE @ \(E) = E,®A(E) = —E,P4(E)

- . - 8 A )
Xf W= e (D EMUEUVTA 0y (E) = Ada(E) =i
a a

i >q> E)
5E. Al

PA(E)
(19)

~ : - i
XRw, = g0/ EtlaL-UvUE] (—;v - E,+C"E) -

~ 1 ~ ~ ~
= G,PA(E) = (—-v E,— C™E, - AC><I>A(E)
r

which provides the explicit expression for the basic operators of the theory. Several attempts
[11] have been made to simplify the Gauss law constraint (18), which ininfinitesimal form reads
G,(x)®P4(E) = 0, by means of a unitary transformatiar, (E) = exp{—(i/r)Q(E)}P4(E)

in the electric field representation. The variatiogﬁ(E) = —3dQ(E)/dE, transforms as

a standard Lie-algebra-valued connection and modifies the opeé?a(b so that the new

constraint equation&’, (x)®',(E) = iC*E, - 5@, (E) = 0 reduce to simple ‘s-wave’
conditions.

(b) The magnetic field representatigr:

The choice of the polarization subalgeb}ﬁ) results in polarized wavefunctions of the form

V(A E,U;¢) = Ce(i/rz)fd3xtr[AE—UVU’1E]cDE(A + VUU_l) (20)

whered ; is an arbitrary functional oftl = A+VU U 1. The left-action of on wavefunctions
Yz is now

i _ _
LyWe(3) =<'t exp{—2r—2/d3xtr[U/AU/ ‘r+uTtEU'VUU

1 1 _ i
+ 5A/E’ — EU’VU’ 1E’]} exp{——2 / dx tr[AE — UVU—lE]}
r
X dp(A+VU'U T +U A+ VUUHU'TY. (21)
The constraint equations (18) in the present magnetic representation are
LyW(@) =DYENw @) = p(h)=pU AU +VU'U™ (22)

(note the absence of a phase in comparison with the electric representation case). The
infinitesimal form of the finite expression (21) is

- . - 8 A )
XR W, = e(|/r2)fd3xtr[AE—Uvu LE] @ E,® —i ®
A VE=¢ A (A = e(A) SA. e(A)
XEwp = —igel/rO/EUEUVUEE Y o p(4) = APp(A) = APr(A) (23)
~ . . . 1 1) 1)
XRy, = e(|/r2)j Bxtr[AE-UVULE] _vy. + b . ® )
Pa E { r SAa c Ah CSAL E(A)

SinceT -equivariant conditions (8), (18) and (22) are imposed as finite left restrictions,
it is evident that not all the operatoss® will preserve the constraints; we shall Clood
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the subalgebra ofgpod~physical) operators which will do so. These must be found inside
the right-enveloping algebia(G*) of polynomials of the basic operatoss, (x), E(x), as
forming part of thenormalizerof T'; for example, a sufficient condition f@}good to preserve
the constraints isggood, 7] C Ker dD(;). In particular, some good operators are

Ggood = (r[E7 () B*(x)], tr[E/ (1) E*(0)], tr[B! (x)B*(x)], &) (24)

whereB, = V A A, — 3rC® A, A A, (the magnetic field) can be interpreted as a ‘correction’

to A, that, unlike A,, transforms homogeneously under the adjoint actiorf dsee the
second line of (13)). The componert” (x) of the standard canonical energy—momentum
tensor for Yang—Mills theories are linear combinations of operators in (24); for example,
0%(x) = — tr[E2(x) + B2(x)] is the Hamiltonian density. In this way, Poinédnvariance is
retrieved in the constrained theory. At this stage, it is worth mentioningghatould have
included the entire Poincarlgebra had we incorporated the Poikagmoup intoG (see [4, 5]
for the Abelian case). However, unlike other standard approaches to quantum mechanics,
GAQ still remains even in the absence of a well defined (space)time evolution, an interesting
and desirable property concerning the quantization of gravity (see, for example, [12]).

Let us mention, for the sake of completeness, that the actual use of good operators is
not restricted to first- and second-order operators. Higher-order operators can constitute a
useful tool in finding the whole constrained Hilbert spag,«(G). In fact, it can be obtained
from aT-equivariant (physical) state©, i.e. G,®© = 0, on which the energy—-momentum
tensor has null expectation valg@© |6+’ |®©) = 0, by taking the orbit of the rest of good
operators passing through this ‘vacuum’. This has indeed been a rather standard technique (the
Verma module approach) in theories where null vector states are present in the original Hilbert
space [10, 13, 14]. From another point of view, with regard to confinement, exponentials of
the formes, = trlexpe;u fzz do /¥ E’)] and Bz, = tr[exp(e;x fzz do /% é’)], whereX; is
a two-dimensional surface in three-dimensional space, are good operators related to Wilson
loops.

As a step prior to tackling the massive case, let us show how new physics can enter
the theory by considering non-trivial representati of T or, in an equivalent way, by
introducing certain extra pseudo-cocycles in the group law (10).

3.1. ¢9-angle

More general representations for the constraint subgiupamely the one-dimensional
representatiom)(;)(U) = €<, can be considered if we impose additional boundary conditions

such ad/ (x) = =+ I; this means that we compactify the spate— 53, so that the grouf

falls into disjoint homotopy classdd/;, €y, = (¥} labelled by integer$ € Z = n3(T)

(the third homotopy group). The index (the #-angle[7]) parametrizeson-equivalent
quantizationsin the same way that Bloch momenterdoes for particles in periodic potentials,
where the wavefunction acquires a phas@ + 2r) = €y (¢) after a translation of, let us

say, Zr. The phenomenon of non-equivalent quantizations can also be reproduced by keeping
the constraint conditio (U) = 1, as in (18) and (22), at the expense of introducing a
new cocycle (indeed a coboundagy)which is added to the previous cocyélén (10). The
generating function of; is ny(g) = ¢ [ dx COx), wherec? is the time component of the
Chern-Simons secondary characteristic class

cH = —

1 &Tzewﬁy tr(Fup Ay — 3A,A5A4,) (25)
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which is the vector whose divergence equals the Pontryagin defsity 9,C"* =
—(1/16x)tr(* F*' F,,,) (see [8], for instance). Like some total derivatives (namely, the
Pontryagin density), which do not modify the classical equations of motion when added to the
Lagrangian but have a non-trivial effect in the quantum theory, the cobouéggives rise to
non-equivalent quantizations parametrizedbyhen the topology of the space is affected by
the imposition of certain boundary conditions (‘compactification of the space’), even though
it is a trivial cocycle of the ‘unconstrained’ theory. The phenomenon of non-equivalent
quantizations can sometimes also be understood &haronov—-Bohm-like effe¢an effect
experienced by the quantum particle but not by the classical one) and the gradigerdah also

be understood as amnduced gauge connectig¢eee, e.g., [15, 16], and [17] for the example of
asuperconducting ring threaded by a magnetic flux) which modifies momenta according to the
minimal coupling. For our case, the induced gauge conneéijptg) = (z?r2/8n2)Bj8A',§

(B¢ is the magnetic field) modifies the momentum operakyrss iXX — E,+(9r?/872)B,

and, accordingly, the Sobdinger equatiory dx @%(x)® = £ for stationary solutions

with energy&. As is well known, the theory also exhibits a band energy structure of the
form « + 8 cos®, the ground-state band functional) = 3, €/?|0,) being a superposition of
wavefunctionalsy;(A) = (A|0Q;) peaked near the classical zero-energy configurations (pure
gauge potentials), = U, VU, ™.

As already discussed, only coboundaries generated by funcjignswith non-trivial
gradientsn(g)l,—, # O at the identityg = e (i.e. pseudo-cocycles), namely = &;, will
provide a contribution to the connection form of the theory (11) and the structure constants of
the original Lie algebra. However, as we have just seen, a coboundary generated by a global
function on the original (infinite-dimensional) grodphaving trivial gradient at the identity,
namelyé;, can contribute the quantization with global (topological) effects as the new group
has a non-equivalent global multiplication law.

In both cases, non-trivial gauge transformation propertiBé{?(U) # 1, of the
wavefunctional®(A) can be reproduced, as already mentioned, by keeping the trivial
representation])(;)(U) = 1 at the expense of introducing new (pseudo-)cocyélesr &;, in
the centrally extended group law (10). However, wheggadoes not introduce new degrees
of freedom into the theory, pseudo-cocycles such asovide new couples of conjugated field
operators, thus substantially modifying the theory. Let us examine this in more detail.

4. The massive case: ‘spontaneous’ symmetry ‘breaking’ and alternatives to the Higgs
mechanism

The effect of the pseudo-cocyde = &; for A # 0 is equivalent to inducingternal (‘spinor-

like") infinite-dimensional non-Abelian representatidd%’ of 7. It modifies the commutation
relations (13) and the number of field degrees of freedom of the theory by restricting the number
of vector fields in the characteristic subalgelfrawith respect to the massless case, where

G. ~ 7. Thatis, new couples of generata@is?. , f((fb), with C4%2.¢ = 0, become conjugated

(see the last commutator of (13)) and, therefore, new basic operators enter the theory. To
count the number of field degrees of freedom for a given structure subdreum a given

mass matrix. = A,7T¢, let us denote by = dim(T) andc¢ = dim(G,.) the dimensions

of the rigid subgroups of" and G.; in general, for an arbitrary mass matuix we have

¢ < 1. Unpolarized,U (1)-equivariant functionsb (A}, EJ, ¢,) depend om = 2 x 3t + ¢

field coordinates inl = 3 dimensions; polarization equations introdyce= ¢ + (n — ¢)/2
independent restrictions on wavefunctions, correspondirgian-dynamical coordinates in

G. and half of the dynamical ones; finally, constraints imp@se ¢ + (r — ¢)/2 additional
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restrictions which leavg¢ = n — p — g = 3t — ¢ field degrees of freedom (ih = 3). Indeed,
for the massive case, constraints aezond clasand we can impose only a polarization
subalgebra?, c 7, which contains a characteristic subalgefira= (XX , with 4, = 0

vb) c T (which is isomorphic t@.) and half of the rest of generatorsin(excluding2)t. In
total,q = c+(r —¢)/2 < r independent constraints, which lead to constrained wavefunctions
having supportorf,, .o = 3t —c¢ > f,.=o arbitrary fields; these fields correspond tmassless
vector bosons attached # andt — ¢ massive vector bosons. In particular, for the massless
case, we havé. = 7,i.e.c = 1, since constraints afest clasg(that is, we can imposg =t
restrictions) and constrained wavefunctions have suppoff,0p = 3t — 7 = 2t < fiux0
arbitrary fields corresponding to massless vector bosons. The subalgébreorresponds
to the unbroken gauge symmetry of the constrained theory and proves tadeabof Ggood
(remember the characterization gdod operators before equation (24); see also [2, 5] for a
definition and subtle distinctions between constraints and gauge symmetries inside GAQ).
Let us work out a couple of examples. Cartan (maximal Abelian) subalgebr@s of
will be preferred as candidates for the rigid subgroup of the unbroken electromagnetic gauge
symmetry. Thus, let us use the Cartan basls E.,) instead of(T%), and denotdy;, ¢+, }
the coordinates of’ attached to this basis (i.e., are complex field coordinates attached
to each rootka, andg; are real field coordinates attached to the maximal torug)ofFor
T = SU2)(x) andr = ApH;, the characteristic, polarization and constraint subalgebras
(leading to the electric field representation) are

G. = (X}) WM = (X}, X} X%) T, =(XF.XF ). (26)

Indeed, the appearance of a central term in the commutator
XE KRR T=is(e— XE +itsx - E 27
(X X ] =180 = WX, ) #1580 = 1)E (@7

prevents the vector fieldﬁk(g‘;1 from being inG. and precludes the simultaneous imposition of
X (ffl\llphys = 0andX gfﬂkllphys = 0 as constraints (for the trivial representatin;j)(U ) =1),

so that a polarization subalgelifais the only option 7, has to contain the ‘negative modes’
5(571 when the ‘positive’ one§(9L+l have been chosen "), or the other way round). The

new couple ofoasicoperatorséﬂ = Xgﬂ (these are basic because they can no longer be

written in terms ofA andE) represent two new field degrees of freedom which are transferred
to the vector potentialsiil to conform massive vector bosons; iéﬂ can be seen as the
longitudinal component ofi .1, which is missing (is zero) in the massless case. Thus, the
constrained theory corresponds to a self-interacting field theory of a massless vecta# boson
with ‘unbroken’ gauge subgroufi. = U (1)(x) C SU(2)(x) and two charged vector bosons
A1 with mass cubed:? = A;.

ForT = SU(3)(x) andx = AoH>, we have

L oL
Xeﬂ Xeztl
T, =(XR XR XK ).

@12’ TT@x1’ @23

G = (Xk

012>

Xk xh

) gLA) = ()N(L 0+2,43° (28)

0127

t A similar situation happens in the bosonic string theory, where we can impose as constraints half of the Virasoro
operators (the positive modég o) only; that is, the appearance of central terms in the Lie algebra (12) precludes the
whole Virasoro algebra to be imposed as constraints, and only a polarization subalgebra can be imposed consistently.
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Indeed, in this case, the relevant commutators

v R H v R

[Xw+1(X)’ X«i 1(y)] 18(x — y)le(x)
v R v R i v R f v R A2 -

(X Xoa0] = 730 T N X TR = )Xy HIE0X = 0)E (29)
o o - e —i SR : A2 -

(Xt Xoam] = 735(x =W)X T8 — y)sz(x) 2‘3(x —Y)E

reveal that the vector fieldifg‘;2 and 5(513 have dynamical content and cannot be included
in G.. Also, its conjugated character precludes the simultaneous impositirirj{g)f3 and
XR " as constraints, and a polarization subalgefyéas to be chosen. In contrast, the

P+2,+43
vector f|eldsX§ are devoid of dynamical content, as can be seen from the first line of (29),
and can be S|multaneously imposed as constraintg, ifthis is because of the particular
choice of mass matrix, which determines different ‘symmetry breaking’ patterns). As for

T = SU(2)(x), the new couples of basic operatd}*§2,i3 = f(gfﬂis represent four new field

degrees of freedom which are transferred to the vector potevitj@l§3 to conform massive
vector bosons. Thus, the constrained theory corresponds to a self-interacting theory of two
massless vector bosods ,, two massless charged vector bosdns (the ‘unbroken’ gauge
subgroupis now, = SU(2) x U(1)(x) C SU(3)(x)) and four charged vector bosoAs 13
with mass cubed3 = 1,.

Summarizing, new basic operatots., = f((fﬂ, with C#~ A" # 0, and new good
operator’; = {Casimir operators of } (i runs the range dI') enter the theory, in contrast
to the massless case. For exampleffoe SU (2)(x), the Casimir operator is

. . A1\ 2 . R . .
Cx) = (Gl(x) + r—;) +2(G+1(x)G_1(x) + G_1(x)G+1(x)). (30)

Also, the Hamiltonian densit§®(x) = — tr[ E2(x) + B2(x)] for m = 0 can be affected in the
massive case: # 0 by the presence of extra terms proportional to these Casimir operators as
follows:

2
A r A
O (x) = Oo(x) + > —Cio). (31)

Thus, the Sctirdinger equatiory’ d®x @,n#o(x)cb = £® is also modified by the presence of
extra terms.

As already mentioned in reference to the Virasoro group, pseudo-cocycle parameters such
as; are usually hidden in a redefinition of the generators involved in the pseudo-extension
Gi(x) + rijr? = é;(x). However, whereas the vacuum expectation vam¢éi(x)|0x)
is zerot, the vacuum expectation val(ﬁa|é;(x)|ok) = A;/r? of the redefined operators
G;(x) is non-null and proportional to the cubed mass in the ‘directioof the ‘unbroken’
gauge symmetry,, which depends on the particular choice of the mass matrixhus,
the effect of the pseudo-extension manifests also in a different choice of a vacuum in which
some gauge operators have a non-zero expectation value. This fact reminds us of the Higgs
mechanism in non-Abelian gauge theories, where the Higgs fields point to the direction of
the non-null vacuum expectation values. However, the spirit of the Higgs mechanism, as an

1t It can be easily proven taking into account that the vacuum is annihilated by the right version of the polarization
subalgebra dual tg,, [18]; also,G; = X[ is always in7,,; that is, it is zero on constrained wavefunctiond(ghys,
including the physical vacuum.
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approach to supply mass, and the one discussed in this paper are radically different, even
though they have some common characteristics. In fact, we are not making use of extra
scalar fields in the theory to provide mass to the vector bosons, but it is the gauge group itself
that acquires dynamics for the massive case and transfers degrees of freedom to the vector
potentials.

Before finishing, let us show how to incorporate fermionic matter into the theory and
outline the main changes in the foregoing discussion had we considered it from the beginning.

5. Incorporating fermionic matter

Fermionic matter can enter the theory through extra (Dirac) field coordinates, | =
1,..., p, which we can assemblelnto a column vecfotr), and an extra cocyclénater
leading to a quantizingupergroupSG. The group law that describes this boson—fermion
gauge theory is (10) together with

Y (x) = ¢/ (x) + p(U )Y (x)
v =9 )+ x)p U@ (32)

Ematter = i/dax (J/VOP(U,)‘/f - 1uDIO(U/_l))/Ol/f/)

wherep (U) is a p-dimensional representation ®facting on the column vectogs, andy° is

the time component of the standard Dirac matrie€sTo compute the left- and right-invariant
super-vector fields(2-® and the polarized super-wavefunctiondl$A, E, U, ¥, ¥; ¢), we

have to take into account the Grassmann character of the Dirac field coordinates. The unitary
irreducible representations &fG can easily be constructed by following the main steps
described in this paper and by taking care of the subtleties introduced by the anti-commutation
of Grassmann variables (see [19] for the finite-dimensional example of the super-Galilei group
SG ). We should mention that, in the presence of fermion sources, the infinitesimal version
of the constraint (18), i.e. the Gauss law, is modified to

n _ 1 N ~ N i = n _
Gy Pay(E,¥) = <—;V “E,—CE,- A, — ;lﬂyofal//)q)A,w(Ea Y¥) =0 (33)

(wheret, denote the generators pj in accordance with other standard approaches. Other
interesting questions such as chiral anomalies are left to future publications.

6. Some comments and outlook

One question which is worthwhile to comment upon is the preservation of renormalizability
for a non-trivial mass matrix # 0. Since our approach to quantization is not perturbative,

we must answer this question using general arguments. In fact, from a group-theoretical
point of view, there is no reason why a given unitary irreducible representation of a group

G (namely, the massive one) can show bad properties, such as ‘inescapable divergences’,
whereas others (namely, the massless one) do not. Even more, when we use the term ‘unbroken
gauge symmetry’, in referring tf., we mean simply the subgroup Bfdevoid of dynamical
content; the gauge group of the constrained theory is, in both the massless and massive cases,
the groupT = T/U (1), although, for the massive case, only a polarization subgup

can be consistently imposed as a constraint. This is also the case of the Virasoro algebra
(12) in string theory, where the appearance of central terms does not spoil gauge invariance
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but forces us to impose half of the Virasoro operators only (the positive mi)ﬂ;e@ as
constraints.

Thus, the ‘spontaneous breakdown’ of the gauge symmetry gfomanifests through
non-trivial transformations of the phageof the wavefunctionall under the action of’,
leading to the appearance of new ‘internal’ field degrees of freedom which modify the ‘field
mass content’ of some vector potentidlsdepending on the choice of mass-matrix elements
M= =2tr(T7)). This situation recalls the important physical implicationsgebmetric
phasegnamely, Berry’s phase) in quantum mechanics, the case discussed in the present paper
being a particular one. In other words, the presence of mass is detected by the wavefunctional
W in its ‘gauge excursions’ through the configuration space, as happens with the presence
of monopoles (see [15, 16] for a discussion on the emergence of gauge structureg—the *
connection'—and generalized spin when quantizing on a coset $pa¢. Also, the zeros
(critical values) of the mass-matrix elemehtsorrespond to different phases of the physical
system characterized by the corresponding unbroken gauge symmgethus, the system
can undergo ‘spontaneous’ phase transitions between different phases corresponding to non-
equivalent fibrationd” of T by U (1) (i.e. different choices of characteristic subgroupof
7).

Open questions remain about what happens when a ‘true’ cogyelasts; for example,
we can find non-trivial central extensioffs of T = Map(St, T') by U(1) (Kac—Moody
groups) in one compact spatial dimension, deformations which correspond to anomalous
situations in the standard (canonical) approach to quantization of gauge theories. This
fact makes the quantization of ‘massive’ Yang—Mills fields (in this scheme) not so trivial,
even in one spatial dimension. Also, it would be worth exploring the richness of the case
T = SU(o0) (infinite number of colours), the Lie algebra of which is related to the (infinite-
dimensional) Lie algebra of area-preserving diffeomorphisms of the spiisfi S?) (see [20]
and references therein). In general, the cohomological richness, i.e. the number of inequivalent
central (pseudo-)extensions, Bf = Map(M, T')) depends on the topology @ff. Also, as
usually happens with central charges, a quantization of the mass parameters(n)/3,
n=123,...could arise from the compact character of the involved manifolds.

Another question that deserves further study is, of course, the physical implications that
this new point of view carries along.

Appendix. A (0 + 1)D analogy

This appendix is intended to clarify ideas by providing a simple, but illustrative, quantum
mechanical analogy which contains most of the essential elements exposed in the paper.
Indeed, aSU (2) gauge invariant Yang—Mills theory i(0 + 1)D may eventually be related

to a spinning particle with constraints (zero total angular momentum) inside the present GAQ
framework.

Let us denote by = r (jff j‘/;o), Ag = Az, AL = A1 £ 1A, thesu(2)-valued vector

potentials, and let us choose the following set of coordinates:

i z z z5 i
g =1 0+ = 2 o_ = —i g ecsl g o e8? (A1)
|z1] 21 7]

for the gauge group

% 1

SU@2) = iU _ ( @ >,z,»,zjf € C/detU) = |z12 + |22 = 1}. (A2)
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Let us also work in an holomorphic picture and defihe= ﬁ(AHE) andQ = %(A —iE).

The adjoint action of the gauge group on the vector poteAtihd the electric field can be
written explicitly as

Uou-t — 1 g¢o @90 Qo O+ el g, e s
0 1+ gep —p_eiv0  givo 0. —0o) \p_en geo (A3)

and the centrally extended group law (10) now adopts the form

U'=U'U
Q"=0+U™'QU
0'=Q0+U'QU (A%)

1 B -1,y
"=¢'cexp=tr S - exp 2ik(py — ¢y —
{h=g¢expg [(Q Q) (U‘lQ/U>:| P 2h(py — @0 — ¥o)
where we miss the mixed cocydge because we are working in zero spatial dimensions (we
are restricting ourselves to a ‘single point’). We are also keeping only the (relevant) linear
term Agp in the expansion of tijoz log U] (o3 is the standard Pauli matrix). The left- and
right-invariant vector fields are explicitly

- . )
L __ R __
X; =X} _;&
. 9 -9 . 9 3
vt - % y19:; % L % _19: %
(o] 90 2Q{3C 0 90 2Q§8§
9 B] B] ] -9
XL = — 2 +2i _——2<Q><—) —2<Qx—_> A5
© = g0 o0 T g 20/, 20/, (AS)
e i+a+2—+iQ><— +Q><i +1 ;i
= 2% 900 de. Tog o). 20) g
vL _ » 9 2 9 +——I<Q _) —|<_xi> —A ;i
= 2%900 Mg g 20/, 00), "
XR = UiU—1 —ifyoutc—
R 17) 2 3¢
R_—uv—u-t 1UQU’1§1
0 2 ac
gR _ 0
%o 3‘,00
. i ) ‘ 9 , 9
XR — _e—2lg00 7_+e—2I(p0 1+ - _)\'e—2lq00 r—
=73 ® 505 1+ge.p )8(p+ @ gag
)}R = _leZi‘/’O(p+i + eZi‘PO(]_ +(ﬂ+¢—)i + )Le2i<ﬂ0¢+é-i
. 2 dpo dp_ il

where (A x B), = €““A,B,., €% = 1, denotes the vector product and x B). =
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(A x B); £i(A x B),. The commutators (13) now adopt the following form:

[X5.. X5 |=—-i8 [X§ .X5]=-E [X§.X5]=-IE

(X5, X5 ]=-2ixf [X5. X[ ]=2iX§  [X].XJ]=-iX} - 2ia8

(X X§,]1=0 (XX XB]=-2iXF [XF XE]=2iXEk (A6)
B S o L

(XX XE]=2XK [XF.XF]=-XE [XF.XE]=0

where we have omitted the commutatos® . Xg ], which have the same form as for
e J
the ng vector fields. One can also work out easily theantization 1-forn{11), which is

Osu ()
i _ ix
® = —tr[DAD — DAD] + ————— (x_dy+ — x+dx_) —i¢~tdz (A7)
4 1+ e x-
where we denotd) = UQU ™Y, D = UQU ™Y, y» = é#%g,, x. = e%%y_. The
characteristic subalgebrss just
Ge = (XL) (A8)
and a full-polarization subalgebra exists for arbitrary (non-zgreyhich is
G, = (XL, XL, X5). (A9)

The general solution to the polarization equatidfisy = 0, X~ € G, leads to a Hilbert space
HW(G) of wavefunctions of the form

WA, 0o, 91, 0, 0, 0) = {1 +gup_) e i (y_, D) (A10)

whered is an arbitrary power series in the variabjesandD. A scalar product can be given
through the invariant integration volume 6t

w(@) = ﬁ [1_[ dA, AdE, } A [dRe(g:) A dIm(gs) A dgo] A ¢ dz. (A11)

The phase space related to this quantum system is clgdrly %3 x §2, as can be inferred
from the symplectic formv = d® /G, (the quotient of @ by the trajectories generated by
left-invariant vector fields in (A8)), the parametebeing the analogous of the spin

The constraint equations

od /- 00
XR\IJ;())P;)yS_O = X—8_+|<DXE> =0
8<I>X7 od i (AL2)
R gy® _ i([Dx =) =
X  Wphys = 0 = 5 +|<Dx 8D>+_0
keep two degrees of freedom out of the originat8 + 1 corresponding to this ‘spinning-like

particle’. They can be interpreted as zero total angular-momentum (orbital + spin) conditions.
Note that the condition

o0 (- 0P
XEwll =0 = —2Axd>+xfa——l<DXa—D) =0 (A13)
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is incompatible with both conditions in (A12), which correspond to a polarization subalgebra
T, = (f((fo, )?57) of 7, unless. = 0. For. = 0, the characteristic subalgebra (A8) contains the
wholesu(2) subalgebrag does no longer depend gn, and the constraint conditions (A12)
and (A13) keep a ‘radial’ dependencedfon R? = 1 tr[ D D] (‘s-waves’), as corresponds to
a spin-zero particle with zero orbital angular momentum.

The good operators are

Ggooa = ([0, [0?], t[0Q]. €. &) (A14)

whereC = (X® +21.8)2 + 2XR XX +2XR X[ is the Casimir operator U (2).
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by using the simple example given in the appendix. Both approaches share the idea of ‘emergence of new (internal)
degrees of freedom, existence of inequivalent quantizations and the appearante cdanection’ when constraints
become second class. In fact, the role played by the characteristic suligrau@AQ is similar to the role played by

H when quantizing on a coset spaggH ; also, the piec®;y o) = ﬁé(g’lg)x lgr=g—1 dg/ of the general connection

form (11) in equation (A7) corresponds to &/ (2)-connection’. However, an important distinction has to be made
between both schemes of constrained quantization. The counterpart of the constraint equations (right conditions)

RyW(g) = W(g*h) = W(g) VhieH geG

in the generalized Dirac’s approach to the constrained quantizatidty &h are the polarization equations of GAQ

(see the paragraph before equation (14)) which, in contrast, are intendedlit®the (left) regular representation

Ly W(g) = W(g' +g) of G on wavefunctionsl. In brief, GAQ further ‘constrains’ wavefunctions by mean®gfra
T-equivariance conditions (8) like (A12), which are not present in the generalized Dirac’s scheme of quantization.
Also, T-equivariance conditions in GAQ force the definitiorgofod operatorgobservables), concept which is absent

in the other scheme.
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